Skip to content

meanOver

hb edited this page Apr 13, 2015 · 3 revisions

matrixStats: Benchmark report


meanOver() benchmarks

This report benchmark the performance of meanOver() against alternative methods.

Alternative methods

  • mean() + [()
  • mean.default() + [() - avoids method dispatching

as below

> meanOver_R_v1 <- function(x, na.rm = FALSE, idxs) {
+     mean(x[idxs], na.rm = na.rm)
+ }

and

> meanOver_R_v2 <- function(x, na.rm = FALSE, idxs) {
+     mean.default(x[idxs], na.rm = na.rm)
+ }

Data type "integer"

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (naProb > 0) 
+         x[sample(n, size = naProb * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n=1000 vector

All elements

> x <- data[["n=1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755108  93.8    2637877 140.9  2637877 140.9
Vcells 18338081 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
4 mean.default 0.0042 0.0046 0.0052 0.0050 0.0054 0.0181
1 meanOver 0.0058 0.0065 0.0111 0.0069 0.0077 0.3083
2 meanOver_no_refine 0.0058 0.0065 0.0075 0.0069 0.0075 0.0281
3 mean 0.0119 0.0135 0.0172 0.0142 0.0152 0.0789
expr min lq mean median uq max
4 mean.default 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.364 1.417 2.109 1.385 1.429 17.042
2 meanOver_no_refine 1.364 1.417 1.431 1.385 1.393 1.553
3 mean 2.818 2.916 3.275 2.846 2.821 4.362
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=1000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755368  93.8    2637877 140.9  2637877 140.9
Vcells 18339882 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 0.0046 0.0062 0.0083 0.0069 0.0081 0.1036
2 meanOver_no_refine 0.0046 0.0064 0.0085 0.0077 0.0089 0.0689
4 mean.default+[() 0.0085 0.0100 0.0134 0.0112 0.0123 0.0731
3 mean+[() 0.0185 0.0216 0.0256 0.0243 0.0266 0.0778
expr min lq mean median uq max
1 meanOver 1.000 1.000 1.000 1.000 1.000 1.0000
2 meanOver_no_refine 1.000 1.031 1.027 1.111 1.095 0.6654
4 mean.default+[() 1.833 1.625 1.613 1.611 1.524 0.7063
3 mean+[() 4.000 3.500 3.081 3.500 3.285 0.7509
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=1000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755383  93.8    2637877 140.9  2637877 140.9
Vcells 18340510 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0050 0.0065 0.0073 0.0069 0.0079 0.0135
1 meanOver 0.0046 0.0065 0.0075 0.0073 0.0081 0.0289
4 mean.default+[() 0.0104 0.0123 0.0141 0.0127 0.0135 0.0724
3 mean+[() 0.0212 0.0227 0.0249 0.0239 0.0250 0.0712
expr min lq mean median uq max
2 meanOver_no_refine 1.0000 1.000 1.000 1.000 1.000 1.000
1 meanOver 0.9231 1.000 1.028 1.056 1.024 2.143
4 mean.default+[() 2.0769 1.882 1.927 1.833 1.707 5.371
3 mean+[() 4.2304 3.470 3.399 3.444 3.170 5.285
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=1000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755395  93.8    2637877 140.9  2637877 140.9
Vcells 18340718 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0065 0.0077 0.0087 0.0085 0.0092 0.0289
1 meanOver 0.0065 0.0077 0.0089 0.0085 0.0092 0.0254
4 mean.default+[() 0.0154 0.0169 0.0189 0.0177 0.0187 0.0724
3 mean+[() 0.0239 0.0281 0.0300 0.0289 0.0308 0.0724
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.00 1.000 1.000 1.000 1.000
1 meanOver 1.000 1.00 1.023 1.000 1.000 0.880
4 mean.default+[() 2.353 2.20 2.181 2.091 2.021 2.507
3 mean+[() 3.647 3.65 3.456 3.409 3.333 2.507
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=10000 vector

All elements

> x <- data[["n=10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755342  93.8    2637877 140.9  2637877 140.9
Vcells 18340463 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
4 mean.default 0.0108 0.0116 0.0156 0.0119 0.0214 0.0504
1 meanOver 0.0150 0.0158 0.0195 0.0166 0.0243 0.0543
2 meanOver_no_refine 0.0150 0.0162 0.0190 0.0166 0.0243 0.0269
3 mean 0.0166 0.0177 0.0236 0.0185 0.0308 0.1436
expr min lq mean median uq max
4 mean.default 1.000 1.000 1.000 1.000 1.000 1.0000
1 meanOver 1.393 1.367 1.252 1.387 1.135 1.0763
2 meanOver_no_refine 1.393 1.400 1.217 1.387 1.135 0.5344
3 mean 1.536 1.533 1.514 1.548 1.441 2.8473
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=10000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755419  93.8    2637877 140.9  2637877 140.9
Vcells 18341794 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 0.0062 0.0081 0.0115 0.0116 0.0135 0.0316
2 meanOver_no_refine 0.0065 0.0085 0.0128 0.0127 0.0146 0.0493
4 mean.default+[() 0.0177 0.0283 0.0383 0.0335 0.0354 0.4947
3 mean+[() 0.0258 0.0316 0.0636 0.0456 0.0485 1.5518
expr min lq mean median uq max
1 meanOver 1.000 1.000 1.000 1.00 1.000 1.000
2 meanOver_no_refine 1.062 1.048 1.107 1.10 1.086 1.561
4 mean.default+[() 2.875 3.500 3.317 2.90 2.628 15.670
3 mean+[() 4.187 3.904 5.507 3.95 3.600 49.157
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=10000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755431  93.8    2637877 140.9  2637877 140.9
Vcells 18343105 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0092 0.0108 0.0517 0.0115 0.0127 3.8580
1 meanOver 0.0096 0.0108 0.0133 0.0116 0.0131 0.0674
4 mean.default+[() 0.0320 0.0331 0.0372 0.0339 0.0350 0.1216
3 mean+[() 0.0397 0.0416 0.0505 0.0427 0.0443 0.2244
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.0000 1.000 1.000 1.0000
1 meanOver 1.042 1.000 0.2580 1.000 1.030 0.0175
4 mean.default+[() 3.458 3.071 0.7207 2.933 2.758 0.0315
3 mean+[() 4.291 3.857 0.9766 3.700 3.485 0.0582
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=10000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755443  93.8    2637877 140.9  2637877 140.9
Vcells 18345477 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0162 0.0189 0.0262 0.0273 0.0316 0.0427
1 meanOver 0.0158 0.0198 0.0266 0.0279 0.0325 0.0427
4 mean.default+[() 0.0604 0.0637 0.0929 0.1039 0.1153 0.1574
3 mean+[() 0.0701 0.0728 0.1014 0.1072 0.1257 0.2156
expr min lq mean median uq max
2 meanOver_no_refine 1.0000 1.000 1.000 1.000 1.000 1.000
1 meanOver 0.9762 1.051 1.017 1.021 1.030 1.000
4 mean.default+[() 3.7379 3.377 3.547 3.803 3.652 3.685
3 mean+[() 4.3332 3.857 3.871 3.922 3.982 5.045
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=100000 vector

All elements

> x <- data[["n=100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755390  93.8    2637877 140.9  2637877 140.9
Vcells 18345009 140.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=100000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
4 mean.default 0.1024 0.1419 0.1695 0.1777 0.1952 0.5736
2 meanOver_no_refine 0.1363 0.1807 0.2007 0.2048 0.2181 0.3376
1 meanOver 0.1359 0.1804 0.1985 0.2048 0.2188 0.3149
3 mean 0.1113 0.1671 0.1884 0.2052 0.2146 0.2960
expr min lq mean median uq max
4 mean.default 1.000 1.000 1.000 1.000 1.000 1.0000
2 meanOver_no_refine 1.331 1.274 1.184 1.153 1.117 0.5886
1 meanOver 1.327 1.271 1.171 1.153 1.121 0.5490
3 mean 1.087 1.178 1.111 1.155 1.100 0.5161
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=100000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=100000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755467  93.8    2637877 140.9  2637877 140.9
Vcells 18351928 140.1   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
meanOver 0.0408 0.0458 0.0584 0.0535 0.0708 0.0997
meanOver_no_refine 0.0404 0.0458 0.0602 0.0599 0.0724 0.1213
mean+[() 0.1605 0.1680 0.2210 0.1971 0.2702 0.3141
mean.default+[() 0.1494 0.1536 0.2129 0.2254 0.2529 0.6625
expr min lq mean median uq max
meanOver 1.0000 1.000 1.000 1.000 1.000 1.000
meanOver_no_refine 0.9906 1.000 1.030 1.119 1.022 1.216
mean+[() 3.9339 3.668 3.783 3.683 3.815 3.151
mean.default+[() 3.6603 3.353 3.644 4.212 3.571 6.645
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=100000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755479  93.8    2637877 140.9  2637877 140.9
Vcells 18361936 140.1   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 0.1116 0.1265 0.1393 0.1315 0.1432 0.2845
2 meanOver_no_refine 0.1093 0.1278 0.1559 0.1322 0.1444 0.8923
4 mean.default+[() 0.3961 0.4929 0.5282 0.4997 0.5174 1.3185
3 mean+[() 0.4820 0.5251 0.5558 0.5420 0.5605 0.7707
expr min lq mean median uq max
1 meanOver 1.0000 1.000 1.000 1.000 1.000 1.000
2 meanOver_no_refine 0.9793 1.011 1.119 1.006 1.008 3.137
4 mean.default+[() 3.5483 3.898 3.792 3.801 3.613 4.635
3 mean+[() 4.3172 4.152 3.990 4.123 3.914 2.709
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=100000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755491  93.8    2637877 140.9  2637877 140.9
Vcells 18382471 140.3   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 0.1405 0.1592 0.2278 0.1798 0.2816 0.5320
2 meanOver_no_refine 0.1386 0.1603 0.2157 0.1809 0.2668 0.6683
4 mean.default+[() 0.6017 0.6198 0.8459 0.7023 1.0120 2.7547
3 mean+[() 0.6202 0.6513 0.8479 0.7172 1.0742 1.5279
expr min lq mean median uq max
1 meanOver 1.0000 1.000 1.0000 1.000 1.0000 1.000
2 meanOver_no_refine 0.9863 1.007 0.9469 1.006 0.9474 1.256
4 mean.default+[() 4.2822 3.894 3.7139 3.907 3.5940 5.178
3 mean+[() 4.4137 4.092 3.7229 3.989 3.8147 2.872
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=100000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=1000000 vector

All elements

> x <- data[["n=1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755439  93.8    2637877 140.9  2637877 140.9
Vcells 18382011 140.3   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
4 mean.default 1.183 1.262 1.851 2.019 2.113 6.343
3 mean 1.226 1.647 1.922 2.056 2.156 3.263
2 meanOver_no_refine 1.496 1.600 2.176 2.196 2.421 4.950
1 meanOver 1.501 1.811 2.146 2.210 2.445 3.594
expr min lq mean median uq max
4 mean.default 1.000 1.000 1.000 1.000 1.000 1.0000
3 mean 1.037 1.304 1.038 1.019 1.020 0.5144
2 meanOver_no_refine 1.264 1.268 1.176 1.088 1.146 0.7805
1 meanOver 1.268 1.435 1.160 1.095 1.157 0.5666
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755516  93.8    2637877 140.9  2637877 140.9
Vcells 18443126 140.8   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.8946 1.097 1.298 1.191 1.294 3.228
1 meanOver 0.8176 1.068 1.254 1.195 1.279 3.391
4 mean.default+[() 2.0175 2.953 3.710 3.281 4.158 17.903
3 mean+[() 2.0418 3.133 3.712 3.471 4.202 9.454
expr min lq mean median uq max
2 meanOver_no_refine 1.0000 1.0000 1.0000 1.000 1.0000 1.000
1 meanOver 0.9139 0.9733 0.9662 1.003 0.9885 1.051
4 mean.default+[() 2.2552 2.6917 2.8579 2.755 3.2139 5.547
3 mean+[() 2.2823 2.8559 2.8590 2.915 3.2480 2.929
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755528  93.8    2637877 140.9  2637877 140.9
Vcells 18543134 141.5   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 1.048 1.404 1.616 1.562 1.753 4.473
2 meanOver_no_refine 1.059 1.377 1.649 1.594 1.768 4.703
4 mean.default+[() 3.602 5.168 6.149 5.928 6.573 22.382
3 mean+[() 3.592 5.265 6.269 6.066 6.901 22.139
expr min lq mean median uq max
1 meanOver 1.000 1.0000 1.000 1.000 1.000 1.000
2 meanOver_no_refine 1.011 0.9807 1.021 1.020 1.008 1.051
4 mean.default+[() 3.439 3.6805 3.806 3.794 3.749 5.003
3 mean+[() 3.429 3.7498 3.880 3.882 3.936 4.949
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755540  93.8    2637877 140.9  2637877 140.9
Vcells 18743142 143.0   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 1.811 2.399 2.848 2.705 3.081 7.971
1 meanOver 1.775 2.502 2.873 2.765 3.112 7.638
4 mean.default+[() 7.361 10.995 13.259 12.238 13.915 45.206
3 mean+[() 8.352 11.258 13.512 12.358 13.764 32.473
expr min lq mean median uq max
2 meanOver_no_refine 1.0000 1.000 1.000 1.000 1.000 1.0000
1 meanOver 0.9798 1.043 1.009 1.022 1.010 0.9582
4 mean.default+[() 4.0642 4.582 4.656 4.524 4.517 5.6711
3 mean+[() 4.6115 4.692 4.744 4.568 4.468 4.0737
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=1000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=10000000 vector

All elements

> x <- data[["n=10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755487  93.8    2637877 140.9  2637877 140.9
Vcells 18743428 143.1   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
3 mean 11.66 13.64 16.53 16.70 19.04 29.00
4 mean.default 11.59 14.79 18.01 18.03 20.26 71.44
1 meanOver 14.62 16.80 20.21 19.92 22.71 46.23
2 meanOver_no_refine 14.61 17.62 20.35 20.29 21.61 62.55
expr min lq mean median uq max
3 mean 1.0000 1.000 1.000 1.000 1.000 1.000
4 mean.default 0.9936 1.085 1.090 1.079 1.064 2.464
1 meanOver 1.2532 1.232 1.223 1.193 1.193 1.595
2 meanOver_no_refine 1.2524 1.292 1.232 1.215 1.135 2.157
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755564  93.8    2637877 140.9  2637877 140.9
Vcells 19343912 147.6   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 8.242 9.584 10.30 10.44 10.99 18.00
1 meanOver 8.308 9.909 10.53 10.57 11.13 13.65
4 mean.default+[() 25.131 30.762 37.96 33.80 36.23 361.61
3 mean+[() 24.721 30.790 35.30 33.84 36.27 56.97
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.0000
1 meanOver 1.008 1.034 1.022 1.012 1.012 0.7581
4 mean.default+[() 3.049 3.210 3.685 3.237 3.296 20.0854
3 mean+[() 2.999 3.212 3.427 3.241 3.300 3.1644
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755576  93.8    2637877 140.9  2637877 140.9
Vcells 20343920 155.3   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 meanOver 10.48 13.91 14.71 14.69 15.92 21.39
2 meanOver_no_refine 10.60 13.40 14.69 14.70 16.47 19.79
4 mean.default+[() 44.24 58.43 68.27 64.11 70.99 392.93
3 mean+[() 43.35 58.82 68.62 64.34 73.51 348.81
expr min lq mean median uq max
1 meanOver 1.000 1.0000 1.0000 1.000 1.000 1.0000
2 meanOver_no_refine 1.012 0.9633 0.9983 1.001 1.034 0.9251
4 mean.default+[() 4.222 4.2008 4.6408 4.364 4.459 18.3653
3 mean+[() 4.137 4.2286 4.6646 4.379 4.617 16.3036
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755588  93.8    2637877 140.9  2637877 140.9
Vcells 22344829 170.5   42812957 326.7 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 17.28 18.17 21.92 20.85 25.31 30.88
1 meanOver 17.25 18.22 21.84 21.46 25.21 30.55
3 mean+[() 81.87 94.19 117.78 106.58 123.62 421.72
4 mean.default+[() 82.26 96.75 121.88 115.64 126.60 428.60
expr min lq mean median uq max
2 meanOver_no_refine 1.0000 1.000 1.000 1.000 1.0000 1.0000
1 meanOver 0.9984 1.003 0.996 1.030 0.9959 0.9893
3 mean+[() 4.7369 5.184 5.372 5.113 4.8841 13.6561
4 mean.default+[() 4.7600 5.324 5.559 5.548 5.0016 13.8788
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on integer+n=10000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type "double"

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (naProb > 0) 
+         x[sample(n, size = naProb * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n=1000 vector

All elements

> x <- data[["n=1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755535  93.8    2637877 140.9  2637877 140.9
Vcells 27899861 212.9   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
4 mean.default 0.0046 0.0054 0.0056 0.0054 0.0058 0.0065
2 meanOver_no_refine 0.0050 0.0058 0.0063 0.0062 0.0065 0.0112
1 meanOver 0.0062 0.0073 0.0084 0.0081 0.0085 0.0608
3 mean 0.0123 0.0135 0.0153 0.0146 0.0154 0.0747
expr min lq mean median uq max
4 mean.default 1.000 1.000 1.000 1.000 1.000 1.000
2 meanOver_no_refine 1.083 1.071 1.122 1.143 1.133 1.706
1 meanOver 1.333 1.357 1.501 1.500 1.466 9.292
3 mean 2.667 2.500 2.725 2.714 2.666 11.409
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=1000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755612  93.8    2637877 140.9  2637877 140.9
Vcells 23900445 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0023 0.0042 0.0055 0.0058 0.0065 0.0089
1 meanOver 0.0031 0.0046 0.0064 0.0062 0.0071 0.0543
4 mean.default+[() 0.0054 0.0069 0.0108 0.0100 0.0108 0.1736
3 mean+[() 0.0123 0.0142 0.0192 0.0200 0.0208 0.0793
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.334 1.091 1.171 1.067 1.088 6.130
4 mean.default+[() 2.333 1.636 1.967 1.733 1.647 19.609
3 mean+[() 5.333 3.363 3.495 3.466 3.176 8.957
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=1000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755624  93.8    2637877 140.9  2637877 140.9
Vcells 23900553 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0050 0.0058 0.0065 0.0062 0.0073 0.0085
1 meanOver 0.0058 0.0065 0.0080 0.0075 0.0085 0.0601
4 mean.default+[() 0.0108 0.0119 0.0128 0.0127 0.0131 0.0404
3 mean+[() 0.0212 0.0231 0.0243 0.0239 0.0246 0.0712
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.154 1.133 1.240 1.219 1.158 7.090
4 mean.default+[() 2.154 2.066 1.978 2.062 1.790 4.772
3 mean+[() 4.230 4.000 3.749 3.874 3.368 8.408
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=1000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755636  93.8    2637877 140.9  2637877 140.9
Vcells 23901897 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0058 0.0067 0.0081 0.0073 0.0085 0.0635
1 meanOver 0.0073 0.0085 0.0092 0.0089 0.0104 0.0115
4 mean.default+[() 0.0150 0.0167 0.0177 0.0173 0.0181 0.0458
3 mean+[() 0.0262 0.0281 0.0299 0.0296 0.0308 0.0801
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.0000
1 meanOver 1.267 1.257 1.137 1.210 1.227 0.1818
4 mean.default+[() 2.600 2.485 2.192 2.368 2.136 0.7212
3 mean+[() 4.533 4.171 3.699 4.052 3.636 1.2606
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=10000 vector

All elements

> x <- data[["n=10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755583  93.8    2637877 140.9  2637877 140.9
Vcells 23901429 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0131 0.0179 0.0191 0.0185 0.0192 0.0697
4 mean.default 0.0208 0.0269 0.0274 0.0277 0.0281 0.0470
1 meanOver 0.0227 0.0327 0.0337 0.0339 0.0350 0.0377
3 mean 0.0296 0.0383 0.0397 0.0397 0.0404 0.0770
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.00 1.0000
4 mean.default 1.588 1.505 1.437 1.500 1.46 0.6740
1 meanOver 1.735 1.828 1.769 1.833 1.82 0.5414
3 mean 2.265 2.140 2.085 2.146 2.10 1.1050
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=10000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755660  93.8    2637877 140.9  2637877 140.9
Vcells 23902513 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0104 0.0116 0.0131 0.0131 0.0142 0.0181
1 meanOver 0.0158 0.0166 0.0186 0.0177 0.0191 0.0832
4 mean.default+[() 0.0343 0.0381 0.0393 0.0393 0.0404 0.0462
3 mean+[() 0.0435 0.0512 0.0528 0.0520 0.0531 0.1193
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.519 1.433 1.422 1.353 1.338 4.596
4 mean.default+[() 3.296 3.300 3.010 3.000 2.838 2.553
3 mean+[() 4.185 4.433 4.037 3.970 3.729 6.595
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=10000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755672  93.8    2637877 140.9  2637877 140.9
Vcells 23903521 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0089 0.0104 0.0135 0.0123 0.0152 0.0246
1 meanOver 0.0135 0.0150 0.0190 0.0169 0.0210 0.0462
4 mean.default+[() 0.0370 0.0397 0.0464 0.0416 0.0487 0.1120
3 mean+[() 0.0462 0.0504 0.0604 0.0537 0.0710 0.1001
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.522 1.444 1.408 1.375 1.380 1.875
4 mean.default+[() 4.174 3.814 3.429 3.375 3.202 4.547
3 mean+[() 5.217 4.851 4.462 4.359 4.670 4.062
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=10000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755684  93.8    2637877 140.9  2637877 140.9
Vcells 23906836 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0154 0.0164 0.0191 0.0185 0.0192 0.0450
1 meanOver 0.0235 0.0264 0.0284 0.0269 0.0293 0.0504
4 mean.default+[() 0.0712 0.0737 0.0759 0.0751 0.0762 0.1097
3 mean+[() 0.0808 0.0839 0.0883 0.0851 0.0874 0.1936
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.00 1.000
1 meanOver 1.525 1.612 1.488 1.458 1.52 1.120
4 mean.default+[() 4.625 4.506 3.983 4.062 3.96 2.436
3 mean+[() 5.250 5.129 4.633 4.604 4.54 4.299
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=100000 vector

All elements

> x <- data[["n=100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755631  93.8    2637877 140.9  2637877 140.9
Vcells 23906368 182.4   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=100000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.1036 0.1372 0.1999 0.2379 0.2444 0.2622
4 mean.default 0.2013 0.2514 0.2982 0.3157 0.3189 0.7853
3 mean 0.2541 0.2937 0.3286 0.3328 0.3540 0.7622
1 meanOver 0.2025 0.2847 0.3708 0.4254 0.4362 0.5917
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
4 mean.default 1.944 1.832 1.492 1.327 1.305 2.996
3 mean 2.454 2.140 1.644 1.399 1.448 2.908
1 meanOver 1.955 2.074 1.855 1.788 1.784 2.257
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=100000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=100000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755708  93.8    2637877 140.9  2637877 140.9
Vcells 23912852 182.5   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0416 0.0479 0.0614 0.0631 0.0685 0.0935
1 meanOver 0.0751 0.1097 0.1115 0.1126 0.1207 0.2225
4 mean.default+[() 0.1790 0.2666 0.2599 0.2737 0.2779 0.3449
3 mean+[() 0.1940 0.2868 0.2949 0.2930 0.3218 0.3761
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.806 2.289 1.815 1.784 1.761 2.379
4 mean.default+[() 4.306 5.562 4.231 4.335 4.056 3.687
3 mean+[() 4.667 5.984 4.801 4.640 4.697 4.021
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=100000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755720  93.8    2637877 140.9  2637877 140.9
Vcells 23922860 182.6   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.0720 0.0905 0.1131 0.1097 0.1267 0.2264
1 meanOver 0.1213 0.1809 0.1928 0.1929 0.2079 0.3549
4 mean.default+[() 0.3430 0.3628 0.4825 0.5079 0.5335 0.6513
3 mean+[() 0.3576 0.4970 0.5381 0.5463 0.5784 0.7399
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.685 2.000 1.705 1.758 1.641 1.568
4 mean.default+[() 4.765 4.011 4.266 4.630 4.213 2.878
3 mean+[() 4.968 5.494 4.758 4.979 4.567 3.269
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=100000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755732  93.8    2637877 140.9  2637877 140.9
Vcells 23942868 182.7   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 0.1444 0.1979 0.2238 0.2125 0.2371 0.3415
1 meanOver 0.2306 0.3563 0.3830 0.3653 0.4254 0.5401
4 mean.default+[() 0.7206 0.9990 1.1829 1.1248 1.4053 1.8043
3 mean+[() 0.7699 1.1427 1.2426 1.1760 1.4480 1.7947
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.597 1.801 1.711 1.719 1.794 1.582
4 mean.default+[() 4.992 5.049 5.286 5.293 5.926 5.284
3 mean+[() 5.333 5.775 5.552 5.534 6.106 5.256
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=100000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=1000000 vector

All elements

> x <- data[["n=1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755679  93.8    2637877 140.9  2637877 140.9
Vcells 23942400 182.7   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 1.534 1.626 1.997 1.787 2.487 2.823
4 mean.default 2.913 3.011 3.494 3.458 4.015 4.730
3 mean 2.963 3.022 3.526 3.512 3.797 4.941
1 meanOver 3.026 3.114 3.865 3.682 4.667 6.525
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
4 mean.default 1.899 1.851 1.750 1.935 1.614 1.675
3 mean 1.931 1.858 1.765 1.965 1.526 1.750
1 meanOver 1.972 1.914 1.935 2.060 1.876 2.311
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=1000000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755756  93.8    2637877 140.9  2637877 140.9
Vcells 24004460 183.2   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 1.490 1.503 1.548 1.519 1.607 1.763
1 meanOver 2.892 2.910 3.050 2.970 3.137 4.390
3 mean+[() 3.321 3.415 3.838 3.846 3.966 5.386
4 mean.default+[() 3.248 3.638 4.238 3.857 4.267 23.142
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.941 1.935 1.970 1.955 1.952 2.490
3 mean+[() 2.229 2.271 2.479 2.532 2.468 3.055
4 mean.default+[() 2.179 2.420 2.738 2.539 2.655 13.129
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755768  93.8    2637877 140.9  2637877 140.9
Vcells 24104468 184.0   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 1.618 1.849 2.013 2.010 2.188 2.754
1 meanOver 3.130 3.244 3.761 3.679 4.176 5.046
4 mean.default+[() 5.147 6.478 7.745 7.294 8.102 26.860
3 mean+[() 5.175 6.289 7.461 7.433 8.063 26.511
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.935 1.754 1.868 1.831 1.908 1.832
4 mean.default+[() 3.182 3.504 3.847 3.629 3.703 9.752
3 mean+[() 3.199 3.402 3.706 3.698 3.685 9.625
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=1000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755780  93.8    2637877 140.9  2637877 140.9
Vcells 24304476 185.5   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 2.036 2.439 2.734 2.525 3.164 5.757
1 meanOver 3.898 4.558 4.845 4.659 5.370 6.740
4 mean.default+[() 10.575 12.585 14.210 13.882 14.753 34.128
3 mean+[() 9.552 11.966 15.163 14.100 15.738 35.201
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.914 1.868 1.772 1.845 1.697 1.171
4 mean.default+[() 5.193 5.159 5.197 5.499 4.662 5.928
3 mean+[() 4.691 4.905 5.546 5.585 4.974 6.115
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=1000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

n=10000000 vector

All elements

> x <- data[["n=10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755727  93.8    2637877 140.9  2637877 140.9
Vcells 24304008 185.5   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, refine = TRUE), meanOver_no_refine = meanOver(x, refine = FALSE), 
+     mean = mean(x), mean.default = mean.default(x), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 13.93 17.13 17.52 17.37 17.62 22.24
3 mean 26.77 32.68 33.47 33.19 33.97 40.75
4 mean.default 26.47 32.56 33.43 33.22 33.95 39.02
1 meanOver 26.87 34.11 34.84 34.59 35.44 42.24
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
3 mean 1.921 1.908 1.910 1.911 1.927 1.832
4 mean.default 1.900 1.901 1.908 1.913 1.927 1.755
1 meanOver 1.928 1.992 1.988 1.991 2.011 1.899
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean() and mean.default() on n=10000000+all data. Outliers are displayed as crosses. Times are in milliseconds.

A 20% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755804  93.8    2637877 140.9  2637877 140.9
Vcells 24904492 190.1   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 12.09 14.68 15.10 14.97 15.54 20.88
1 meanOver 23.86 28.77 29.09 29.17 30.19 41.48
3 mean+[() 32.97 39.01 42.89 40.24 43.98 73.90
4 mean.default+[() 32.41 38.62 46.43 40.40 45.38 331.60
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.974 1.959 1.926 1.949 1.942 1.987
3 mean+[() 2.728 2.657 2.840 2.689 2.830 3.539
4 mean.default+[() 2.682 2.630 3.074 2.699 2.920 15.881
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.

A 40% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755816  93.8    2637877 140.9  2637877 140.9
Vcells 25904500 197.7   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 14.26 17.32 18.16 17.77 18.99 24.91
1 meanOver 27.51 32.82 35.25 34.42 36.43 52.39
4 mean.default+[() 58.12 69.69 85.13 76.38 88.16 423.77
3 mean+[() 56.98 67.69 84.85 76.62 88.58 375.36
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.929 1.895 1.940 1.937 1.919 2.103
4 mean.default+[() 4.075 4.023 4.687 4.299 4.643 17.012
3 mean+[() 3.995 3.908 4.671 4.312 4.665 15.069
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.

A 80% subset

> x <- data[["n=10000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  1755828  93.8    2637877 140.9  2637877 140.9
Vcells 27904508 212.9   51455548 392.6 68120027 519.8
> stats <- microbenchmark(meanOver = meanOver(x, idxs = idxs, refine = TRUE), meanOver_no_refine = meanOver(x, 
+     idxs = idxs, refine = FALSE), `mean+[()` = meanOver_R_v1(x, idxs = idxs), `mean.default+[()` = meanOver_R_v2(x, 
+     idxs = idxs), unit = "ms")

Table: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 meanOver_no_refine 20.40 22.76 23.74 23.23 24.16 31.10
1 meanOver 39.48 43.97 45.77 44.74 46.49 60.21
4 mean.default+[() 116.79 131.13 169.81 148.02 161.03 589.74
3 mean+[() 117.55 138.76 163.17 149.91 162.95 465.92
expr min lq mean median uq max
2 meanOver_no_refine 1.000 1.000 1.000 1.000 1.000 1.000
1 meanOver 1.935 1.932 1.928 1.926 1.924 1.936
4 mean.default+[() 5.725 5.761 7.152 6.373 6.666 18.963
3 mean+[() 5.762 6.096 6.872 6.454 6.746 14.982
Figure: Benchmarking of meanOver(), meanOver_no_refine(), mean+[()() and mean.default+[()() on double+n=10000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4           GenomeInfoDb_1.3.13   formatR_1.0.3        
 [4] plyr_1.8.1            base64enc_0.1-3       tools_3.2.0          
 [7] digest_0.6.8          RSQLite_1.0.0         annotate_1.45.2      
[10] evaluate_0.5.7        gtable_0.1.2          R.cache_0.11.1-9000  
[13] lattice_0.20-30       DBI_0.3.1             parallel_3.2.0       
[16] mvtnorm_1.0-2         proto_0.3-10          R.rsp_0.20.0         
[19] genefilter_1.49.2     stringr_0.6.2         IRanges_2.1.41       
[22] S4Vectors_0.5.21      stats4_3.2.0          grid_3.2.0           
[25] Biobase_2.27.2        AnnotationDbi_1.29.17 XML_3.98-1.1         
[28] survival_2.38-1       multcomp_1.3-9        TH.data_1.0-6        
[31] reshape2_1.4.1        scales_0.2.4          MASS_7.3-39          
[34] splines_3.2.0         BiocGenerics_0.13.6   xtable_1.8-0         
[37] mime_0.2.1            colorspace_1.2-4      labeling_0.3         
[40] sandwich_2.3-2        munsell_0.4.2         Cairo_1.5-6          
[43] zoo_1.7-12           

Total processing time was 4.16 mins.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('meanOver')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:33:38 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally