-
Notifications
You must be signed in to change notification settings - Fork 0
colRowRanges
matrixStats: Benchmark report
This report benchmark the performance of colRanges() and rowRanges() against alternative methods.
- apply() + range()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805033 43.0 1442291 77.1 1442291 77.1
Vcells 12279862 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 803947 43.0 1442291 77.1 1442291 77.1
Vcells 12276762 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0046 | 0.0065 | 0.0154 | 0.0087 | 0.0117 | 0.323 |
| apply+range | 0.0997 | 0.1646 | 0.2359 | 0.1778 | 0.1879 | 5.933 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1 | 1.00 |
| apply+range | 21.58 | 25.14 | 15.32 | 20.53 | 16 | 18.37 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0050 | 0.0067 | 0.0109 | 0.0090 | 0.0116 | 0.1394 |
| apply+range | 0.1471 | 0.1676 | 0.1784 | 0.1736 | 0.1809 | 0.4450 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.000 |
| apply+range | 29.38 | 24.88 | 16.31 | 19.19 | 15.66 | 3.193 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+10x10 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 4.620 | 6.545 | 15.40 | 8.662 | 11.74 | 323.0 |
| rowRanges | 5.005 | 6.738 | 10.94 | 9.047 | 11.55 | 139.4 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.00 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
| rowRanges | 1.083 | 1.03 | 0.7105 | 1.044 | 0.9836 | 0.4315 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804053 43.0 1442291 77.1 1442291 77.1
Vcells 12277863 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804047 43.0 1442291 77.1 1442291 77.1
Vcells 12282906 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0343 | 0.0362 | 0.0496 | 0.0439 | 0.0549 | 0.1902 |
| apply+range | 0.7383 | 0.8309 | 1.0708 | 1.1279 | 1.2446 | 1.5987 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.0 | 1.00 | 1.000 |
| apply+range | 21.55 | 22.96 | 21.58 | 25.7 | 22.69 | 8.407 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0462 | 0.0489 | 0.2337 | 0.0662 | 0.078 | 16.71 |
| apply+range | 1.2561 | 1.3520 | 1.8275 | 1.4878 | 1.587 | 36.62 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.000 | 1.00 | 1.00 | 1.000 |
| apply+range | 27.19 | 27.65 | 7.821 | 22.47 | 20.35 | 2.191 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+100x100 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 34.26 | 36.19 | 49.61 | 43.89 | 54.86 | 190.2 |
| rowRanges | 46.20 | 48.89 | 233.68 | 66.21 | 77.95 | 16712.8 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.00 |
| rowRanges | 1.348 | 1.351 | 4.71 | 1.509 | 1.421 | 87.88 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804088 43.0 1442291 77.1 1442291 77.1
Vcells 12277886 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804082 43.0 1442291 77.1 1442291 77.1
Vcells 12282929 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0293 | 0.0427 | 0.0492 | 0.0475 | 0.0550 | 0.1001 |
| apply+range | 0.5220 | 0.5514 | 0.5881 | 0.5749 | 0.6163 | 0.8088 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.000 |
| apply+range | 17.84 | 12.91 | 11.96 | 12.09 | 11.2 | 8.081 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0524 | 0.0577 | 0.0647 | 0.0616 | 0.0672 | 0.1193 |
| apply+range | 0.5078 | 0.5476 | 0.8775 | 0.5595 | 0.6082 | 29.6003 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1 |
| apply+range | 9.698 | 9.483 | 13.56 | 9.084 | 9.054 | 248 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+1000x10 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 29.26 | 42.73 | 49.18 | 47.54 | 55.05 | 100.1 |
| rowRanges | 52.35 | 57.74 | 64.70 | 61.59 | 67.18 | 119.3 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| rowRanges | 1.789 | 1.351 | 1.315 | 1.296 | 1.22 | 1.192 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804126 43.0 1442291 77.1 1442291 77.1
Vcells 12278463 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804120 43.0 1442291 77.1 1442291 77.1
Vcells 12283506 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0793 | 0.0828 | 0.0995 | 0.1055 | 0.1118 | 0.1509 |
| apply+range | 8.0571 | 8.5797 | 9.9144 | 8.9132 | 9.7031 | 41.1724 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.0 | 1.0 | 1.00 | 1.0 | 1.00 | 1.0 |
| apply+range | 101.6 | 103.7 | 99.64 | 84.5 | 86.77 | 272.8 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0758 | 0.0781 | 0.0929 | 0.0924 | 0.1051 | 0.1424 |
| apply+range | 8.1868 | 8.5968 | 9.5285 | 8.8701 | 9.3623 | 29.3173 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1 | 1 | 1.0 | 1.00 | 1.00 | 1.0 |
| apply+range | 108 | 110 | 102.6 | 96.01 | 89.09 | 205.8 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+10x1000 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 75.84 | 78.15 | 92.89 | 92.39 | 105.1 | 142.4 |
| 1 | colRanges | 79.30 | 82.77 | 99.50 | 105.48 | 111.8 | 150.9 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | colRanges | 1.046 | 1.059 | 1.071 | 1.142 | 1.064 | 1.06 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804161 43.0 1442291 77.1 1442291 77.1
Vcells 12278804 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804155 43.0 1442291 77.1 1442291 77.1
Vcells 12328847 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.3261 | 0.3911 | 0.4213 | 0.4161 | 0.4379 | 1.043 |
| apply+range | 7.8823 | 11.5018 | 13.1821 | 12.7656 | 13.7377 | 27.096 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 24.17 | 29.41 | 31.29 | 30.68 | 31.37 | 25.98 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.3503 | 0.3838 | 0.4056 | 0.3903 | 0.4279 | 0.5563 |
| apply+range | 8.1934 | 9.2747 | 11.7391 | 11.4503 | 13.1059 | 22.4698 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 23.39 | 24.17 | 28.94 | 29.33 | 30.63 | 40.39 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+100x1000 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 350.3 | 383.8 | 405.6 | 390.3 | 427.9 | 556.3 |
| 1 | colRanges | 326.1 | 391.1 | 421.3 | 416.1 | 437.9 | 1042.8 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanges | 0.9308 | 1.019 | 1.039 | 1.066 | 1.023 | 1.875 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804198 43.0 1442291 77.1 1442291 77.1
Vcells 12279211 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804192 43.0 1442291 77.1 1442291 77.1
Vcells 12329254 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.1963 | 0.2837 | 0.3215 | 0.2968 | 0.3318 | 1.917 |
| apply+range | 2.8171 | 4.1400 | 4.3449 | 4.2383 | 4.4934 | 5.725 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.000 |
| apply+range | 14.35 | 14.59 | 13.52 | 14.28 | 13.54 | 2.986 |
| Table: Benchmarking of rowRanges() and apply+range() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.2633 | 0.3946 | 0.4344 | 0.4631 | 0.4947 | 0.5382 |
| apply+range | 2.7235 | 4.9189 | 5.2305 | 5.1759 | 5.5957 | 8.6934 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 10.34 | 12.47 | 12.04 | 11.18 | 11.31 | 16.15 |
| Figure: Benchmarking of colRanges() and apply+range() on integer+1000x100 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 196.3 | 283.7 | 321.5 | 296.8 | 331.8 | 1917.1 |
| rowRanges | 263.3 | 394.6 | 434.4 | 463.1 | 494.7 | 538.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.0000 |
| rowRanges | 1.341 | 1.391 | 1.351 | 1.56 | 1.491 | 0.2807 |
| Figure: Benchmarking of colRanges() and rowRanges() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804241 43.0 1442291 77.1 1442291 77.1
Vcells 12395358 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804226 43.0 1442291 77.1 1442291 77.1
Vcells 12395486 94.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0031 | 0.0042 | 0.0062 | 0.0064 | 0.0073 | 0.0231 |
| apply+range | 0.1009 | 0.1047 | 0.1120 | 0.1068 | 0.1086 | 0.3445 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 32.74 | 24.72 | 18.13 | 16.82 | 14.84 | 14.92 |
| Table: Benchmarking of rowRanges() and apply+range() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0038 | 0.0050 | 0.0068 | 0.0065 | 0.0081 | 0.0254 |
| apply+range | 0.1012 | 0.1055 | 0.1103 | 0.1074 | 0.1097 | 0.2749 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 26.3 | 21.07 | 16.28 | 16.41 | 13.57 | 10.82 |
| Figure: Benchmarking of colRanges() and apply+range() on double+10x10 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 3.081 | 4.236 | 6.179 | 6.353 | 7.316 | 23.10 |
| rowRanges | 3.850 | 5.005 | 6.776 | 6.545 | 8.085 | 25.41 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.000 | 1.000 | 1.00 | 1.000 | 1.0 |
| rowRanges | 1.25 | 1.181 | 1.097 | 1.03 | 1.105 | 1.1 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804269 43.0 1442291 77.1 1442291 77.1
Vcells 12395369 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804263 43.0 1442291 77.1 1442291 77.1
Vcells 12405412 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.062 | 0.0839 | 0.0942 | 0.0947 | 0.1066 | 0.1278 |
| apply+range | 0.962 | 1.3296 | 1.3875 | 1.3885 | 1.4474 | 1.6245 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 15.52 | 15.84 | 14.72 | 14.66 | 13.57 | 12.71 |
| Table: Benchmarking of rowRanges() and apply+range() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0554 | 0.0678 | 0.0915 | 0.0918 | 0.1151 | 0.229 |
| apply+range | 0.7784 | 0.9637 | 1.3737 | 1.4309 | 1.5354 | 5.086 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 14.04 | 14.22 | 15.01 | 15.58 | 13.34 | 22.21 |
| Figure: Benchmarking of colRanges() and apply+range() on double+100x100 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 55.43 | 67.75 | 91.50 | 91.81 | 115.1 | 229.0 |
| 1 | colRanges | 61.98 | 83.92 | 94.24 | 94.70 | 106.6 | 127.8 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.000 | 1.000 | 1.00 | 1.000 | 1.0000 | 1.000 |
| 1 | colRanges | 1.118 | 1.239 | 1.03 | 1.031 | 0.9264 | 0.558 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804304 43.0 1442291 77.1 1442291 77.1
Vcells 12396062 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804298 43.0 1442291 77.1 1442291 77.1
Vcells 12406105 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.0531 | 0.0547 | 0.0660 | 0.0601 | 0.0751 | 0.1340 |
| apply+range | 0.3499 | 0.3563 | 0.4615 | 0.4310 | 0.5532 | 0.8573 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| apply+range | 6.587 | 6.518 | 6.99 | 7.176 | 7.369 | 6.399 |
| Table: Benchmarking of rowRanges() and apply+range() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0489 | 0.0500 | 0.0538 | 0.0531 | 0.0550 | 0.1093 |
| apply+range | 0.3465 | 0.3561 | 0.3869 | 0.3607 | 0.4321 | 0.6125 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.000 | 1.000 | 1.000 | 1.00 | 1.00 | 1.000 |
| apply+range | 7.087 | 7.115 | 7.191 | 6.79 | 7.85 | 5.602 |
| Figure: Benchmarking of colRanges() and apply+range() on double+1000x10 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 48.89 | 50.05 | 53.81 | 53.12 | 55.05 | 109.3 |
| 1 | colRanges | 53.12 | 54.66 | 66.03 | 60.05 | 75.07 | 134.0 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 |
| 1 | colRanges | 1.087 | 1.092 | 1.227 | 1.13 | 1.364 | 1.225 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804342 43.0 1442291 77.1 1442291 77.1
Vcells 12396088 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804336 43.0 1442291 77.1 1442291 77.1
Vcells 12406131 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.1001 | 0.1272 | 0.1426 | 0.1345 | 0.1538 | 0.3996 |
| apply+range | 5.1757 | 6.7754 | 8.0090 | 8.5032 | 8.7750 | 12.9806 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.0 | 1.00 | 1.00 |
| apply+range | 51.71 | 53.25 | 56.15 | 63.2 | 57.06 | 32.49 |
| Table: Benchmarking of rowRanges() and apply+range() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.0897 | 0.1172 | 0.1255 | 0.1222 | 0.1444 | 0.1898 |
| apply+range | 5.1876 | 5.6340 | 8.0227 | 8.3831 | 8.9481 | 13.6628 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+range | 57.84 | 48.06 | 63.91 | 68.59 | 61.98 | 71.99 |
| Figure: Benchmarking of colRanges() and apply+range() on double+10x1000 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 89.69 | 117.2 | 125.5 | 122.2 | 144.4 | 189.8 |
| 1 | colRanges | 100.09 | 127.2 | 142.6 | 134.5 | 153.8 | 399.6 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanges | 1.116 | 1.085 | 1.136 | 1.101 | 1.065 | 2.106 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804377 43.0 1442291 77.1 1442291 77.1
Vcells 12397008 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804371 43.0 1442291 77.1 1442291 77.1
Vcells 12497051 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.5978 | 0.6113 | 0.7082 | 0.6665 | 0.8003 | 0.8993 |
| apply+range | 8.2700 | 8.8984 | 11.9058 | 11.4655 | 13.4822 | 27.7263 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.00 | 1.00 | 1.00 | 1.0 | 1.00 | 1.00 |
| apply+range | 13.83 | 14.56 | 16.81 | 17.2 | 16.85 | 30.83 |
| Table: Benchmarking of rowRanges() and apply+range() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.5228 | 0.5324 | 0.6375 | 0.5717 | 0.7622 | 0.9431 |
| apply+range | 9.1326 | 9.9736 | 13.3663 | 10.5452 | 13.2749 | 152.8659 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 |
| apply+range | 17.47 | 18.73 | 20.97 | 18.45 | 17.42 | 162.1 |
| Figure: Benchmarking of colRanges() and apply+range() on double+100x1000 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 522.8 | 532.4 | 637.5 | 571.7 | 762.2 | 943.1 |
| 1 | colRanges | 597.8 | 611.3 | 708.2 | 666.5 | 800.3 | 899.3 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanges | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.0000 |
| 1 | colRanges | 1.144 | 1.148 | 1.111 | 1.166 | 1.05 | 0.9535 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804414 43.0 1442291 77.1 1442291 77.1
Vcells 12397033 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanges = colRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 2L,
+ FUN = range, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804408 43.0 1442291 77.1 1442291 77.1
Vcells 12497076 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanges = rowRanges(X, na.rm = FALSE), `apply+range` = apply(X, MARGIN = 1L,
+ FUN = range, na.rm = FALSE), unit = "ms")Table: Benchmarking of colRanges() and apply+range() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 0.5147 | 0.5653 | 0.6685 | 0.7014 | 0.732 | 0.8881 |
| apply+range | 2.9969 | 3.9421 | 4.9898 | 5.2325 | 5.495 | 16.4171 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.00 |
| apply+range | 5.823 | 6.973 | 7.465 | 7.46 | 7.507 | 18.49 |
| Table: Benchmarking of rowRanges() and apply+range() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 0.4531 | 0.6492 | 0.7459 | 0.7982 | 0.8203 | 1.424 |
| apply+range | 3.0323 | 4.9026 | 5.6746 | 5.9891 | 6.3460 | 12.859 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanges | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| apply+range | 6.692 | 7.551 | 7.608 | 7.503 | 7.736 | 9.028 |
| Figure: Benchmarking of colRanges() and apply+range() on double+1000x100 data as well as rowRanges() and apply+range() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanges() and rowRanges() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 514.7 | 565.3 | 668.5 | 701.4 | 732.0 | 888.1 |
| rowRanges | 453.1 | 649.2 | 745.9 | 798.2 | 820.3 | 1424.3 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanges | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowRanges | 0.8803 | 1.149 | 1.116 | 1.138 | 1.121 | 1.604 |
| Figure: Benchmarking of colRanges() and rowRanges() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 BiocGenerics_0.13.6 splines_3.2.0
[4] MASS_7.3-39 munsell_0.4.2 lattice_0.20-30
[7] colorspace_1.2-4 R.cache_0.11.1-9000 multcomp_1.3-9
[10] stringr_0.6.2 plyr_1.8.1 tools_3.2.0
[13] parallel_3.2.0 grid_3.2.0 Biobase_2.27.2
[16] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[19] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[22] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[25] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[28] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[31] Cairo_1.5-6 proto_0.3-10 Total processing time was 48.14 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRanges')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:19:22 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)