Skip to content

colRowLogSumExps

hb edited this page Mar 3, 2015 · 2 revisions

matrixStats: Benchmark report


colLogSumExps() and rowLogSumExps() benchmarks

This report benchmark the performance of colLogSumExps() and rowLogSumExps() against alternative methods.

Alternative methods

  • apply() + matrixStats::logSumExp()
  • apply() + logSumExp0()

where

> logSumExp0 <- function(lx, ...) {
+     iMax <- which.max(lx)
+     log1p(sum(exp(lx[-iMax] - lx[iMax]))) + lx[iMax]
+ }

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "double")

Results

10x10 matrix

> X <- data[["10x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   654179 35.0    1168576  62.5  1168576  62.5
Vcells 12247870 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652373 34.9    1168576  62.5  1168576  62.5
Vcells 12242543 93.5   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 0.0115 0.0175 0.0231 0.0216 0.0262 0.1139
apply+logSumExp 0.0858 0.1066 0.1348 0.1409 0.1526 0.2922
apply+logSumExp0 0.1143 0.1347 0.1832 0.1823 0.2102 0.5759
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 7.433 6.088 5.837 6.536 5.831 2.564
apply+logSumExp0 9.900 7.692 7.934 8.455 8.029 5.054
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 0.0108 0.0119 0.0156 0.0146 0.0158 0.1455
apply+logSumExp 0.0828 0.0874 0.0891 0.0889 0.0905 0.0985
apply+logSumExp0 0.1082 0.1163 0.1222 0.1191 0.1209 0.2749
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.0000
apply+logSumExp 7.678 7.322 5.717 6.079 5.731 0.6772
apply+logSumExp0 10.036 9.741 7.846 8.144 7.658 1.8889
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x10 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowLogSumExps 10.78 11.94 15.58 14.63 15.78 145.5
1 colLogSumExps 11.55 17.52 23.09 21.56 26.18 113.9
expr min lq mean median uq max
2 rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.0000
1 colLogSumExps 1.071 1.468 1.482 1.474 1.659 0.7831
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652504 34.9    1168576  62.5  1168576  62.5
Vcells 12243794 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652498 34.9    1168576  62.5  1168576  62.5
Vcells 12253837 93.5   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 0.4985 0.7018 0.7336 0.7291 0.7589 1.921
apply+logSumExp 1.1048 1.7958 1.9953 1.9003 1.9706 13.446
apply+logSumExp0 1.5514 2.4949 2.6120 2.6127 2.6864 4.294
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.00 1.000 1.000 1.000
apply+logSumExp 2.216 2.559 2.72 2.606 2.596 7.000
apply+logSumExp0 3.112 3.555 3.56 3.583 3.540 2.235
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 0.5278 0.7882 0.8966 0.8354 0.8804 3.462
apply+logSumExp 1.1887 1.8312 2.2091 1.9340 2.1284 13.836
apply+logSumExp0 1.6145 2.4868 2.6728 2.6475 2.7463 9.375
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 2.252 2.323 2.464 2.315 2.418 3.997
apply+logSumExp0 3.059 3.155 2.981 3.169 3.119 2.708
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x100 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 498.5 701.8 733.6 729.1 758.9 1921
rowLogSumExps 527.8 788.2 896.6 835.4 880.4 3462
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.00 1.000
rowLogSumExps 1.059 1.123 1.222 1.146 1.16 1.802
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652544 34.9    1168576  62.5  1168576  62.5
Vcells 12244028 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652538 34.9    1168576  62.5  1168576  62.5
Vcells 12254071 93.5   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 0.4897 0.696 0.6985 0.7129 0.726 0.8088
apply+logSumExp 0.7403 1.167 1.2029 1.2134 1.252 2.3798
apply+logSumExp0 0.9616 1.454 1.4749 1.4996 1.535 1.7550
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 1.512 1.677 1.722 1.702 1.725 2.942
apply+logSumExp0 1.964 2.089 2.111 2.103 2.115 2.170
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 0.5193 0.5380 0.6781 0.733 0.7728 0.8196
apply+logSumExp 0.7291 0.8126 1.0324 1.130 1.2203 1.8924
apply+logSumExp0 0.9366 1.0334 1.2983 1.442 1.5029 1.7704
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 1.404 1.511 1.522 1.541 1.579 2.309
apply+logSumExp0 1.804 1.921 1.915 1.967 1.945 2.160
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x10 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 489.7 696 698.5 712.9 726.0 808.8
rowLogSumExps 519.3 538 678.1 733.0 772.8 819.6
expr min lq mean median uq max
colLogSumExps 1.00 1.000 1.0000 1.000 1.000 1.000
rowLogSumExps 1.06 0.773 0.9708 1.028 1.064 1.013
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652574 34.9    1168576  62.5  1168576  62.5
Vcells 12244684 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652568 34.9    1168576  62.5  1168576  62.5
Vcells 12254727 93.5   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 0.5478 0.5782 0.6905 0.7152 0.7816 1.268
apply+logSumExp 4.5359 4.9241 7.3256 7.3143 8.1495 37.867
apply+logSumExp0 7.5624 8.4844 11.3999 11.6254 13.1914 20.483
expr min lq mean median uq max
colLogSumExps 1.00 1.000 1.00 1.00 1.00 1.00
apply+logSumExp 8.28 8.516 10.61 10.23 10.43 29.85
apply+logSumExp0 13.81 14.674 16.51 16.25 16.88 16.15
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 0.5682 0.6077 0.7344 0.7154 0.8517 1.487
apply+logSumExp 4.4404 4.8479 6.6653 6.3040 8.0638 16.329
apply+logSumExp0 7.5632 8.2886 11.5799 12.2136 13.3396 19.998
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.00
apply+logSumExp 7.815 7.978 9.076 8.811 9.468 10.98
apply+logSumExp0 13.311 13.640 15.767 17.072 15.662 13.45
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 10x1000 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 547.8 578.2 690.5 715.2 781.6 1268
rowLogSumExps 568.2 607.7 734.4 715.4 851.7 1487
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1 1.00 1.000
rowLogSumExps 1.037 1.051 1.064 1 1.09 1.172
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652618 34.9    1168576  62.5  1168576  62.5
Vcells 12245096 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652612 34.9    1168576  62.5  1168576  62.5
Vcells 12345139 94.2   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 4.987 5.125 6.197 6.467 7.034 8.882
apply+logSumExp 10.689 12.077 16.137 16.907 17.795 35.634
apply+logSumExp0 15.399 18.637 22.930 23.486 25.178 38.215
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 2.143 2.356 2.604 2.614 2.530 4.012
apply+logSumExp0 3.088 3.636 3.700 3.631 3.579 4.303
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 5.711 5.756 6.783 5.974 7.872 12.23
apply+logSumExp 11.405 13.741 16.343 16.003 18.308 26.92
apply+logSumExp0 16.547 18.789 22.424 21.983 25.082 38.72
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 1.997 2.387 2.409 2.679 2.326 2.201
apply+logSumExp0 2.897 3.264 3.306 3.680 3.186 3.166
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 100x1000 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowLogSumExps 5.711 5.756 6.783 5.974 7.872 12.229
1 colLogSumExps 4.987 5.125 6.197 6.467 7.034 8.882
expr min lq mean median uq max
2 rowLogSumExps 1.0000 1.0000 1.0000 1.000 1.0000 1.0000
1 colLogSumExps 0.8733 0.8904 0.9136 1.083 0.8936 0.7263
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652649 34.9    1168576  62.5  1168576  62.5
Vcells 12245594 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colLogSumExps = colLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 2L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 2L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   652643 34.9    1168576  62.5  1168576  62.5
Vcells 12345637 94.2   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowLogSumExps = rowLogSumExps(X, na.rm = FALSE), `apply+logSumExp` = apply(X, 
+     MARGIN = 1L, FUN = logSumExp, na.rm = FALSE), `apply+logSumExp0` = apply(X, MARGIN = 1L, FUN = logSumExp0, 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 4.894 4.920 5.847 5.186 6.928 8.537
apply+logSumExp 7.117 7.917 9.369 8.845 11.085 15.001
apply+logSumExp0 9.180 10.060 11.784 11.339 13.444 21.254
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.00 1.000
apply+logSumExp 1.454 1.609 1.602 1.706 1.60 1.757
apply+logSumExp0 1.876 2.045 2.015 2.186 1.94 2.490
Table: Benchmarking of rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowLogSumExps 5.601 5.655 6.79 5.975 8.103 8.957
apply+logSumExp 7.598 9.131 10.13 9.409 11.600 16.795
apply+logSumExp0 9.843 11.255 12.51 12.061 13.926 18.681
expr min lq mean median uq max
rowLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
apply+logSumExp 1.357 1.615 1.491 1.575 1.431 1.875
apply+logSumExp0 1.757 1.990 1.843 2.019 1.719 2.086
Figure: Benchmarking of colLogSumExps(), apply+logSumExp() and apply+logSumExp0() on 1000x100 data as well as rowLogSumExps(), apply+logSumExp() and apply+logSumExp0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps() and rowLogSumExps() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colLogSumExps 4.894 4.920 5.847 5.186 6.928 8.537
rowLogSumExps 5.601 5.655 6.790 5.975 8.103 8.957
expr min lq mean median uq max
colLogSumExps 1.000 1.000 1.000 1.000 1.000 1.000
rowLogSumExps 1.145 1.149 1.161 1.152 1.169 1.049
Figure: Benchmarking of colLogSumExps() and rowLogSumExps() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4         splines_3.2.0       MASS_7.3-39        
 [4] munsell_0.4.2       lattice_0.20-30     colorspace_1.2-4   
 [7] R.cache_0.11.1-9000 multcomp_1.3-9      stringr_0.6.2      
[10] plyr_1.8.1          tools_3.2.0         grid_3.2.0         
[13] gtable_0.1.2        TH.data_1.0-6       survival_2.38-1    
[16] digest_0.6.8        R.rsp_0.20.0        reshape2_1.4.1     
[19] formatR_1.0.3       base64enc_0.1-3     mime_0.2.1         
[22] evaluate_0.5.7      labeling_0.3        sandwich_2.3-2     
[25] scales_0.2.4        mvtnorm_1.0-2       zoo_1.7-12         
[28] Cairo_1.5-6         proto_0.3-10       

Total processing time was 36.84 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colLogSumExps')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:03:36 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally