Skip to content

colRowProds

hb edited this page Mar 3, 2015 · 2 revisions

matrixStats: Benchmark report


colProds() and rowProds() benchmarks

This report benchmark the performance of colProds() and rowProds() against alternative methods.

Alternative methods

  • colProds()/rowProds() using method="expSumLog"
  • apply() + prod()
  • apply() + product()

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "double")

Results

10x10 matrix

> X <- data[["10x10"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colProds w/ direct 0.0166 0.0204 0.0244 0.0231 0.0254 0.0370
colProds w/ expSumLog 0.0389 0.0427 0.0494 0.0450 0.0466 0.2210
apply+prod 0.0562 0.0601 0.0707 0.0633 0.0695 0.2556
apply+product 0.0801 0.0837 0.0927 0.0858 0.0889 0.2718
expr min lq mean median uq max
colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
colProds w/ expSumLog 2.349 2.094 2.019 1.950 1.833 5.979
apply+prod 3.395 2.943 2.893 2.742 2.735 6.916
apply+product 4.837 4.104 3.793 3.716 3.500 7.354
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
rowProds w/ direct 0.0169 0.0198 0.0287 0.0227 0.0346 0.2610
rowProds w/ expSumLog 0.0377 0.0416 0.0533 0.0450 0.0683 0.0989
apply+prod 0.0566 0.0597 0.0753 0.0641 0.0945 0.1151
apply+product 0.0801 0.0832 0.1058 0.0860 0.1320 0.1786
expr min lq mean median uq max
rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.0000
rowProds w/ expSumLog 2.227 2.097 1.859 1.983 1.972 0.3791
apply+prod 3.341 3.010 2.626 2.822 2.728 0.4410
apply+product 4.727 4.194 3.686 3.788 3.811 0.6844
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 10x10 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,10x10,benchmark.png) ![](figures/rowProds w/ direct,10x10,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowProds w/ direct 16.94 19.83 28.70 22.71 34.65 261.00
1 colProds w/ direct 16.55 20.40 24.45 23.10 25.41 36.96
expr min lq mean median uq max
2 rowProds w/ direct 1.0000 1.000 1.000 1.000 1.0000 1.0000
1 colProds w/ direct 0.9773 1.029 0.852 1.017 0.7333 0.1416
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,10x10,benchmark.png)

100x100 matrix

> X <- data[["100x100"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colProds w/ direct 0.2364 0.2637 0.3825 0.4229 0.4410 0.7279
3 apply+prod 0.3934 0.4804 0.6621 0.7106 0.7807 1.0209
2 colProds w/ expSumLog 0.7572 0.7996 1.2270 1.1726 1.1993 14.5982
4 apply+product 0.9220 1.0007 1.5001 1.4923 1.5733 15.7754
expr min lq mean median uq max
1 colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.665 1.822 1.731 1.681 1.770 1.402
2 colProds w/ expSumLog 3.204 3.032 3.208 2.773 2.720 20.054
4 apply+product 3.901 3.795 3.921 3.529 3.568 21.671
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowProds w/ direct 0.2063 0.2523 0.5141 0.3765 0.4011 16.856
3 apply+prod 0.3969 0.5245 0.7312 0.7099 0.8032 3.802
2 rowProds w/ expSumLog 0.7241 0.7849 1.0789 1.1293 1.1889 4.586
4 apply+product 0.9689 1.4289 1.4834 1.5429 1.6097 2.071
expr min lq mean median uq max
1 rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.0000
3 apply+prod 1.923 2.079 1.422 1.885 2.002 0.2255
2 rowProds w/ expSumLog 3.509 3.111 2.099 2.999 2.964 0.2721
4 apply+product 4.696 5.663 2.885 4.098 4.013 0.1229
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 100x100 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,100x100,benchmark.png) ![](figures/rowProds w/ direct,100x100,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowProds w/ direct 206.3 252.3 514.1 376.5 401.1 16856.4
1 colProds w/ direct 236.4 263.7 382.5 422.9 441.0 727.9
expr min lq mean median uq max
2 rowProds w/ direct 1.000 1.000 1.0000 1.000 1.000 1.0000
1 colProds w/ direct 1.145 1.045 0.7441 1.123 1.099 0.0432
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,100x100,benchmark.png)

1000x10 matrix

> X <- data[["1000x10"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colProds w/ direct 0.1313 0.1394 0.1681 0.1461 0.2027 0.2810
3 apply+prod 0.2348 0.2641 0.3306 0.3299 0.3669 0.5909
2 colProds w/ expSumLog 0.4850 0.4922 0.5446 0.4987 0.5214 0.7283
4 apply+product 0.5978 0.6238 0.7360 0.6921 0.8694 1.0401
expr min lq mean median uq max
1 colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.789 1.895 1.967 2.258 1.810 2.103
2 colProds w/ expSumLog 3.695 3.532 3.240 3.414 2.573 2.592
4 apply+product 4.554 4.476 4.379 4.738 4.290 3.701
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowProds w/ direct 0.0993 0.1166 0.1457 0.1494 0.1653 0.2179
3 apply+prod 0.2402 0.3505 0.4167 0.4258 0.4718 0.8731
2 rowProds w/ expSumLog 0.4585 0.5151 0.6145 0.6533 0.6679 0.7922
4 apply+product 0.6063 0.7116 0.8683 0.8966 0.9751 1.9355
expr min lq mean median uq max
1 rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 2.419 3.005 2.860 2.850 2.853 4.007
2 rowProds w/ expSumLog 4.616 4.416 4.217 4.374 4.040 3.636
4 apply+product 6.105 6.101 5.959 6.003 5.897 8.883
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 1000x10 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,1000x10,benchmark.png) ![](figures/rowProds w/ direct,1000x10,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colProds w/ direct 131.27 139.4 168.1 146.1 202.7 281.0
rowProds w/ direct 99.32 116.6 145.7 149.4 165.3 217.9
expr min lq mean median uq max
colProds w/ direct 1.0000 1.000 1.0000 1.000 1.0000 1.0000
rowProds w/ direct 0.7566 0.837 0.8668 1.022 0.8158 0.7753
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,1000x10,benchmark.png)

10x1000 matrix

> X <- data[["10x1000"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colProds w/ direct 1.327 1.469 1.979 1.597 2.567 4.458
3 apply+prod 2.087 2.249 3.134 2.483 3.924 8.394
2 colProds w/ expSumLog 3.400 3.604 4.783 3.771 5.864 9.653
4 apply+product 4.279 4.542 5.954 5.162 7.250 10.602
expr min lq mean median uq max
1 colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.572 1.531 1.584 1.555 1.529 1.883
2 colProds w/ expSumLog 2.562 2.454 2.417 2.361 2.285 2.165
4 apply+product 3.224 3.092 3.008 3.232 2.825 2.378
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowProds w/ direct 1.436 1.615 2.118 1.786 2.519 6.415
3 apply+prod 2.043 2.193 3.003 2.355 3.838 7.292
2 rowProds w/ expSumLog 3.406 3.694 4.772 4.027 5.802 12.706
4 apply+product 4.249 4.535 5.636 4.844 6.857 9.381
expr min lq mean median uq max
1 rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.423 1.358 1.418 1.318 1.523 1.137
2 rowProds w/ expSumLog 2.372 2.287 2.253 2.254 2.303 1.981
4 apply+product 2.959 2.807 2.662 2.712 2.721 1.462
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 10x1000 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,10x1000,benchmark.png) ![](figures/rowProds w/ direct,10x1000,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colProds w/ direct 1.327 1.469 1.979 1.597 2.567 4.458
rowProds w/ direct 1.436 1.615 2.118 1.786 2.519 6.415
expr min lq mean median uq max
colProds w/ direct 1.000 1.0 1.00 1.000 1.0000 1.000
rowProds w/ direct 1.082 1.1 1.07 1.119 0.9816 1.439
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,10x1000,benchmark.png)

100x1000 matrix

> X <- data[["100x1000"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colProds w/ direct 2.361 2.531 3.967 3.021 4.323 20.27
3 apply+prod 3.700 4.506 5.894 5.275 6.656 22.81
2 colProds w/ expSumLog 7.782 8.275 10.933 10.757 11.903 26.87
4 apply+product 9.237 10.313 12.816 12.427 14.210 31.85
expr min lq mean median uq max
1 colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.567 1.781 1.486 1.746 1.540 1.125
2 colProds w/ expSumLog 3.296 3.270 2.756 3.561 2.753 1.326
4 apply+product 3.912 4.075 3.230 4.114 3.287 1.571
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowProds w/ direct 2.406 2.681 3.413 2.756 3.433 20.57
3 apply+prod 4.195 6.266 6.863 6.438 8.002 16.99
2 rowProds w/ expSumLog 7.617 8.025 9.986 8.255 11.275 27.86
4 apply+product 9.549 11.675 13.543 12.001 16.285 23.64
expr min lq mean median uq max
1 rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.744 2.337 2.011 2.336 2.331 0.826
2 rowProds w/ expSumLog 3.166 2.993 2.926 2.995 3.285 1.355
4 apply+product 3.969 4.354 3.968 4.354 4.744 1.149
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 100x1000 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,100x1000,benchmark.png) ![](figures/rowProds w/ direct,100x1000,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowProds w/ direct 2.406 2.681 3.413 2.756 3.433 20.57
1 colProds w/ direct 2.361 2.531 3.967 3.021 4.323 20.27
expr min lq mean median uq max
2 rowProds w/ direct 1.0000 1.0000 1.000 1.000 1.000 1.0000
1 colProds w/ direct 0.9814 0.9438 1.163 1.096 1.259 0.9854
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,100x1000,benchmark.png)

1000x100 matrix

> X <- data[["1000x100"]]
> colStats <- microbenchmark(`colProds w/ direct` = colProds(X, method = "direct", na.rm = FALSE), 
+     `colProds w/ expSumLog` = colProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 2L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 2L, FUN = product, 
+         na.rm = FALSE), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(`rowProds w/ direct` = rowProds(X, method = "direct", na.rm = FALSE), 
+     `rowProds w/ expSumLog` = rowProds(X, method = "expSumLog", na.rm = FALSE), `apply+prod` = apply(X, 
+         MARGIN = 1L, FUN = prod, na.rm = FALSE), `apply+product` = apply(X, MARGIN = 1L, FUN = product, 
+         na.rm = FALSE), unit = "ms")

Table: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colProds w/ direct 1.295 1.361 1.687 1.690 1.929 2.824
3 apply+prod 2.097 2.919 3.307 3.042 3.683 14.382
2 colProds w/ expSumLog 4.837 4.971 5.825 5.611 6.563 7.701
4 apply+product 5.690 6.593 7.682 7.218 8.625 19.188
expr min lq mean median uq max
1 colProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 1.620 2.144 1.960 1.800 1.910 5.093
2 colProds w/ expSumLog 3.736 3.652 3.453 3.320 3.403 2.728
4 apply+product 4.395 4.843 4.554 4.271 4.472 6.795
Table: Benchmarking of rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowProds w/ direct 1.144 1.528 2.069 2.118 2.511 3.996
3 apply+prod 2.387 3.326 4.794 4.552 5.553 16.424
2 rowProds w/ expSumLog 5.096 5.206 6.415 6.510 7.382 12.879
4 apply+product 6.047 7.286 8.624 8.717 9.871 15.870
expr min lq mean median uq max
1 rowProds w/ direct 1.000 1.000 1.000 1.000 1.000 1.000
3 apply+prod 2.086 2.177 2.317 2.149 2.212 4.110
2 rowProds w/ expSumLog 4.454 3.408 3.100 3.073 2.940 3.223
4 apply+product 5.286 4.770 4.168 4.115 3.931 3.972
Figure: Benchmarking of colProds w/ direct(), colProds w/ expSumLog(), apply+prod() and apply+product() on 1000x100 data as well as rowProds w/ direct(), rowProds w/ expSumLog(), apply+prod() and apply+product() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct,1000x100,benchmark.png) ![](figures/rowProds w/ direct,1000x100,benchmark.png) Table: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colProds w/ direct 1.295 1.361 1.687 1.690 1.929 2.824
rowProds w/ direct 1.144 1.528 2.069 2.118 2.511 3.996
expr min lq mean median uq max
colProds w/ direct 1.0000 1.000 1.000 1.000 1.000 1.000
rowProds w/ direct 0.8837 1.122 1.227 1.253 1.302 1.415
Figure: Benchmarking of colProds w/ direct() and rowProds w/ direct() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

![](figures/colProds w/ direct_vs_rowProds w/ direct,1000x100,benchmark.png)

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4         BiocGenerics_0.13.6 splines_3.2.0      
 [4] MASS_7.3-39         munsell_0.4.2       lattice_0.20-30    
 [7] colorspace_1.2-4    R.cache_0.11.1-9000 multcomp_1.3-9     
[10] stringr_0.6.2       plyr_1.8.1          tools_3.2.0        
[13] parallel_3.2.0      grid_3.2.0          Biobase_2.27.2     
[16] gtable_0.1.2        TH.data_1.0-6       survival_2.38-1    
[19] digest_0.6.8        R.rsp_0.20.0        reshape2_1.4.1     
[22] formatR_1.0.3       base64enc_0.1-3     mime_0.2.1         
[25] evaluate_0.5.7      labeling_0.3        sandwich_2.3-2     
[28] scales_0.2.4        mvtnorm_1.0-2       zoo_1.7-12         
[31] Cairo_1.5-6         proto_0.3-10       

Total processing time was 36.57 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colProds')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:15:41 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally