-
Notifications
You must be signed in to change notification settings - Fork 0
colRowTabulates
matrixStats: Benchmark report
This report benchmark the performance of colTabulates() and rowTabulates() against alternative methods.
- ???
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "integer", range = c(-10, 10))> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 807441 43.2 1442291 77.1 1442291 77.1
Vcells 12282647 93.8 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805947 43.1 1442291 77.1 1442291 77.1
Vcells 12277772 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 0.2637 | 0.3932 | 0.406 | 0.4009 | 0.4211 | 0.7684 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 0.3811 | 0.3905 | 0.4116 | 0.3953 | 0.4073 | 0.9855 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 10x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 381.1 | 390.5 | 411.6 | 395.3 | 407.3 | 985.5 |
| 1 | colTabulates | 263.7 | 393.2 | 406.0 | 400.9 | 421.1 | 768.4 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.0000 | 1.000 | 1.0000 | 1.000 | 1.000 | 1.0000 |
| 1 | colTabulates | 0.6919 | 1.007 | 0.9864 | 1.014 | 1.034 | 0.7797 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806076 43.1 1442291 77.1 1442291 77.1
Vcells 12278752 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806070 43.1 1442291 77.1 1442291 77.1
Vcells 12283795 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 0.8781 | 0.8927 | 1.086 | 1.18 | 1.213 | 1.696 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 0.9139 | 0.9264 | 1.203 | 1.165 | 1.379 | 1.806 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 100x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 913.9 | 926.4 | 1203 | 1164 | 1379 | 1806 |
| 1 | colTabulates | 878.1 | 892.7 | 1086 | 1180 | 1213 | 1696 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
| 1 | colTabulates | 0.9608 | 0.9636 | 0.9022 | 1.013 | 0.8795 | 0.9393 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806112 43.1 1442291 77.1 1442291 77.1
Vcells 12278776 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806106 43.1 1442291 77.1 1442291 77.1
Vcells 12283819 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 0.8057 | 0.8286 | 1.042 | 1.076 | 1.096 | 1.431 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 0.9847 | 1.198 | 1.258 | 1.224 | 1.29 | 1.625 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 1000x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 805.7 | 828.6 | 1042 | 1076 | 1096 | 1431 |
| rowTabulates | 984.7 | 1198.0 | 1258 | 1224 | 1290 | 1625 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowTabulates | 1.222 | 1.446 | 1.206 | 1.138 | 1.177 | 1.135 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806148 43.1 1442291 77.1 1442291 77.1
Vcells 12279006 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806142 43.1 1442291 77.1 1442291 77.1
Vcells 12284049 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1.524 | 2.138 | 2.162 | 2.276 | 2.322 | 2.837 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1.429 | 1.454 | 1.704 | 1.48 | 2.059 | 2.362 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 10x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.429 | 1.454 | 1.704 | 1.480 | 2.059 | 2.362 |
| 1 | colTabulates | 1.524 | 2.138 | 2.162 | 2.276 | 2.322 | 2.837 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colTabulates | 1.066 | 1.471 | 1.269 | 1.538 | 1.128 | 1.201 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806184 43.1 1442291 77.1 1442291 77.1
Vcells 12279653 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806178 43.1 1442291 77.1 1442291 77.1
Vcells 12329696 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 6.743 | 7.226 | 8.87 | 8.771 | 10.19 | 20.71 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 6.963 | 7.099 | 9.139 | 8.335 | 9.739 | 35.82 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 100x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 6.963 | 7.099 | 9.139 | 8.335 | 9.739 | 35.82 |
| 1 | colTabulates | 6.743 | 7.226 | 8.870 | 8.771 | 10.186 | 20.71 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.0000 | 1.000 | 1.0000 | 1.000 | 1.000 | 1.000 |
| 1 | colTabulates | 0.9684 | 1.018 | 0.9706 | 1.052 | 1.046 | 0.578 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806220 43.1 1442291 77.1 1442291 77.1
Vcells 12280054 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806214 43.1 1442291 77.1 1442291 77.1
Vcells 12330097 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")Table: Benchmarking of colTabulates() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 6.074 | 7.399 | 8.37 | 8.295 | 9.355 | 21.92 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Table: Benchmarking of rowTabulates() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 6.628 | 7.006 | 8.59 | 7.944 | 10.05 | 23.31 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
| Figure: Benchmarking of colTabulates() on 1000x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 6.628 | 7.006 | 8.59 | 7.944 | 10.049 | 23.31 |
| 1 | colTabulates | 6.074 | 7.399 | 8.37 | 8.295 | 9.355 | 21.92 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowTabulates | 1.0000 | 1.000 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
| 1 | colTabulates | 0.9164 | 1.056 | 0.9745 | 1.044 | 0.9309 | 0.9403 |
| Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 BiocGenerics_0.13.6 splines_3.2.0
[4] MASS_7.3-39 munsell_0.4.2 lattice_0.20-30
[7] colorspace_1.2-4 R.cache_0.11.1-9000 multcomp_1.3-9
[10] stringr_0.6.2 plyr_1.8.1 tools_3.2.0
[13] parallel_3.2.0 grid_3.2.0 Biobase_2.27.2
[16] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[19] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[22] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[25] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[28] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[31] Cairo_1.5-6 proto_0.3-10 Total processing time was 20.02 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colTabulates')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:22:41 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)