Skip to content

colRowCounts

Dongcan Jiang edited this page Apr 18, 2015 · 3 revisions

matrixStats: Benchmark report


colCounts() and rowCounts() benchmarks

This report benchmark the performance of colCounts() and rowCounts() against alternative methods.

Alternative methods

  • colSums() and rowSums()
  • apply() + sum()

Data type "logical"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 matrix

> X <- data[["10x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.005938 0.0067165 0.0080754 0.0082460 0.0088910 0.025245 100
colSums 0.008057 0.0088875 0.0099427 0.0099305 0.0104160 0.020142 100
apply+sum 0.059256 0.0607415 0.0627614 0.0616695 0.0626665 0.118169 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 1.356854 1.323234 1.231234 1.204281 1.171522 0.797861 100
apply+sum 9.979117 9.043624 7.771964 7.478717 7.048307 4.680887 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.006094 0.0067220 0.0081886 0.0074820 0.0089930 0.026223 100
rowSums 0.007512 0.0083075 0.0094609 0.0097285 0.0103050 0.016426 100
apply+sum 0.059751 0.0616895 0.0633502 0.0623910 0.0633815 0.118581 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100
rowSums 1.232688 1.235867 1.155373 1.300254 1.145891 0.6263967 100
apply+sum 9.804890 9.177254 7.736375 8.338813 7.047871 4.5220227 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+10x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
2 rowCounts 6.094 6.7220 8.18861 7.482 8.993 26.223 100
1 colCounts 5.938 6.7165 8.07536 8.246 8.891 25.245 100
expr min lq mean median uq max neval
2 rowCounts 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 1.0000000 100
1 colCounts 0.9744011 0.9991818 0.9861698 1.102112 0.9886578 0.9627045 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.036579 0.0395410 0.0432680 0.0434065 0.0451985 0.070758 100
colSums 0.088357 0.0906760 0.1266016 0.0920435 0.0936095 1.763543 100
apply+sum 0.497600 0.5070345 0.5219988 0.5176640 0.5271675 0.702221 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 100
colSums 2.415512 2.293215 2.925988 2.12050 2.071075 24.923585 100
apply+sum 13.603434 12.823006 12.064315 11.92596 11.663385 9.924263 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.041875 0.0452355 0.0484104 0.0475000 0.0500030 0.076317 100
rowSums 0.104313 0.1055440 0.1071632 0.1063995 0.1072025 0.126581 100
apply+sum 0.497969 0.5036205 0.5462540 0.5080855 0.5176900 2.208795 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 100
rowSums 2.491057 2.333212 2.213638 2.23999 2.143921 1.658621 100
apply+sum 11.891797 11.133302 11.283803 10.69654 10.353179 28.942372 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+100x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 36.579 39.5410 43.26800 43.4065 45.1985 70.758 100
rowCounts 41.875 45.2355 48.41045 47.5000 50.0030 76.317 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.144783 1.144015 1.118851 1.094306 1.106298 1.078564 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.035913 0.038243 0.0408713 0.0402695 0.0428585 0.061141 100
colSums 0.087694 0.088412 0.0901938 0.0891375 0.0898490 0.111044 100
apply+sum 0.222391 0.224935 0.2481667 0.2266585 0.2281415 1.254100 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.441846 2.311848 2.206775 2.213524 2.096410 1.816195 100
apply+sum 6.192493 5.881730 6.071908 5.628540 5.323133 20.511604 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.042930 0.0471360 0.0497080 0.0487460 0.052275 0.079379 100
rowSums 0.105768 0.1067035 0.1089648 0.1075655 0.108248 0.138420 100
apply+sum 0.222589 0.2263275 0.2503524 0.2281120 0.230878 1.232702 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.463732 2.263737 2.192101 2.206653 2.070741 1.743786 100
apply+sum 5.184929 4.801585 5.036466 4.679604 4.416605 15.529321 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+1000x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 35.913 38.243 40.87129 40.2695 42.8585 61.141 100
rowCounts 42.930 47.136 49.70795 48.7460 52.2750 79.379 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.195389 1.232539 1.216207 1.210494 1.219711 1.298294 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.039266 0.0425685 0.0499366 0.0475745 0.0562715 0.071372 100
colSums 0.089403 0.0914930 0.0947872 0.0934355 0.0973960 0.116637 100
apply+sum 3.119022 3.1601980 3.3255419 3.2152245 3.3158165 5.537935 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.276855 2.149312 1.898151 1.963983 1.730823 1.634212 100
apply+sum 79.433148 74.237946 66.595294 67.582938 58.925326 77.592543 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.042912 0.0465335 0.0526830 0.0518285 0.0582990 0.073202 100
rowSums 0.105237 0.1068495 0.1102865 0.1080705 0.1120115 0.128831 100
apply+sum 3.091413 3.1668350 3.3342174 3.2436465 3.3429070 4.604021 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.452391 2.296184 2.093398 2.085156 1.921328 1.759938 100
apply+sum 72.040758 68.054950 63.288285 62.584225 57.340726 62.894743 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+10x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 39.266 42.5685 49.93659 47.5745 56.2715 71.372 100
rowCounts 42.912 46.5335 52.68301 51.8285 58.2990 73.202 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 100
rowCounts 1.092854 1.093144 1.054998 1.089418 1.036031 1.02564 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.355991 0.3622200 0.3782094 0.3772685 0.3867415 0.453541 100
colSums 0.800710 0.8074205 1.4562706 0.8257325 0.8781550 43.417423 100
apply+sum 4.697739 4.7985110 5.3041886 4.8985055 6.0378795 7.193121 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 100
colSums 2.249242 2.229089 3.850435 2.188713 2.270651 95.72987 100
apply+sum 13.196230 13.247504 14.024477 12.984136 15.612184 15.85991 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.408146 0.4142640 0.4340272 0.4300310 0.4379550 0.625429 100
rowSums 0.961649 0.9693825 1.1144560 0.9791385 0.9937745 2.859870 100
apply+sum 4.747159 4.8462455 5.8856342 4.9676860 6.3587870 47.848796 100
expr min lq mean median uq max neval
rowCounts 1.00000 1.000000 1.00000 1.000000 1.000000 1.000000 100
rowSums 2.35614 2.340011 2.56771 2.276902 2.269125 4.572653 100
apply+sum 11.63103 11.698447 13.56052 11.551925 14.519270 76.505560 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+100x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 355.991 362.220 378.2094 377.2685 386.7415 453.541 100
rowCounts 408.146 414.264 434.0272 430.0310 437.9550 625.429 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.146507 1.143681 1.147585 1.139854 1.132423 1.378991 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on logical+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.350349 0.3558935 0.3673879 0.3658435 0.3735365 0.480174 100
colSums 0.794660 0.7980335 0.9464144 0.8052210 0.8212955 1.832601 100
apply+sum 1.962195 1.9924685 2.2194187 2.0185175 2.1264470 3.155022 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.268195 2.242338 2.576063 2.200998 2.198702 3.816535 100
apply+sum 5.600687 5.598497 6.041077 5.517434 5.692742 6.570581 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on logical+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.414670 0.419928 0.432341 0.428901 0.437181 0.489343 100
rowSums 0.967677 0.971479 1.522248 0.975393 1.001624 42.870240 100
apply+sum 1.983647 2.016538 2.281843 2.044653 2.720711 3.200574 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.333607 2.313442 3.520943 2.274168 2.291098 87.607752 100
apply+sum 4.783676 4.802104 5.277877 4.767191 6.223305 6.540553 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on logical+1000x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on logical+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 350.349 355.8935 367.3879 365.8435 373.5365 480.174 100
rowCounts 414.670 419.9280 432.3410 428.9010 437.1810 489.343 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.183591 1.179926 1.176797 1.172362 1.170384 1.019095 100
Figure: Benchmarking of colCounts() and rowCounts() on logical+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type "integer"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 matrix

> X <- data[["10x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.005682 0.0064400 0.0077954 0.0076020 0.0087730 0.023538 100
colSums 0.007743 0.0088525 0.0097964 0.0098845 0.0103940 0.019366 100
apply+sum 0.059633 0.0611430 0.0631214 0.0618195 0.0628015 0.115958 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100
colSums 1.362724 1.374612 1.256690 1.300250 1.184772 0.8227547 100
apply+sum 10.495072 9.494255 8.097273 8.132005 7.158498 4.9264169 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.005950 0.0066280 0.0078493 0.0076265 0.0087445 0.024736 100
rowSums 0.007211 0.0082150 0.0094199 0.0094705 0.0100245 0.018920 100
apply+sum 0.058600 0.0607045 0.0626365 0.0614350 0.0626330 0.119455 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100
rowSums 1.211933 1.239439 1.200097 1.241788 1.146378 0.7648771 100
apply+sum 9.848740 9.158796 7.979906 8.055464 7.162559 4.8291963 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+10x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 5.682 6.440 7.79539 7.6020 8.7730 23.538 100
rowCounts 5.950 6.628 7.84928 7.6265 8.7445 24.736 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 100
rowCounts 1.047166 1.029192 1.006913 1.003223 0.9967514 1.050896 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.015487 0.0162980 0.0186450 0.0186025 0.0194460 0.043599 100
colSums 0.088638 0.0895070 0.1236637 0.0902290 0.0908410 1.746604 100
apply+sum 0.499101 0.5017345 0.5106780 0.5053695 0.5121805 0.577766 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.00000 100
colSums 5.723381 5.491901 6.632552 4.85037 4.671449 40.06064 100
apply+sum 32.227094 30.785035 27.389602 27.16675 26.338604 13.25182 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.018273 0.0189520 0.0210456 0.0206605 0.0220100 0.036831 100
rowSums 0.104563 0.1054375 0.1079447 0.1061655 0.1068625 0.139020 100
apply+sum 0.495515 0.5023850 0.5441405 0.5059065 0.5161050 2.212074 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 100
rowSums 5.722268 5.563397 5.129077 5.138574 4.85518 3.774538 100
apply+sum 27.117332 26.508284 25.855274 24.486653 23.44866 60.060112 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+100x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 15.487 16.298 18.64496 18.6025 19.446 43.599 100
rowCounts 18.273 18.952 21.04563 20.6605 22.010 36.831 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.0000000 100
rowCounts 1.179893 1.162842 1.128757 1.11063 1.131852 0.8447671 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.014599 0.015304 0.0170788 0.0173265 0.0180870 0.033042 100
colSums 0.087615 0.088299 0.0895675 0.0889625 0.0894515 0.109900 100
apply+sum 0.222761 0.225360 0.2479239 0.2265370 0.2278000 1.236478 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 100
colSums 6.001438 5.769668 5.244363 5.134476 4.945624 3.32607 100
apply+sum 15.258648 14.725562 14.516464 13.074597 12.594681 37.42140 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.018388 0.019063 0.0210177 0.0213135 0.0218810 0.046230 100
rowSums 0.105702 0.106704 0.1078388 0.1072280 0.1077245 0.137149 100
apply+sum 0.223146 0.225356 0.2480699 0.2264370 0.2287040 1.223689 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.00000 1.000000 1.00000 1.000000 1.000000 100
rowSums 5.748423 5.59744 5.130844 5.03099 4.923198 2.966667 100
apply+sum 12.135414 11.82164 11.802880 10.62411 10.452173 26.469587 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+1000x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 14.599 15.304 17.07881 17.3265 18.087 33.042 100
rowCounts 18.388 19.063 21.01774 21.3135 21.881 46.230 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000 100
rowCounts 1.259538 1.245622 1.230633 1.23011 1.209764 1.399128 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.016090 0.017190 0.022674 0.020080 0.0261005 0.040684 100
colSums 0.089775 0.091518 0.095203 0.093436 0.0988845 0.120075 100
apply+sum 3.083524 3.161154 3.295713 3.209097 3.2908455 4.094655 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 5.579553 5.323909 4.198774 4.653187 3.788606 2.951406 100
apply+sum 191.642262 183.894968 145.352073 159.815612 126.083619 100.645340 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.017991 0.0193095 0.0250942 0.0237690 0.0295245 0.052373 100
rowSums 0.105131 0.1065075 0.1091586 0.1077885 0.1105690 0.131508 100
apply+sum 3.100086 3.1708005 3.3213949 3.2154925 3.3215920 4.163554 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 5.843533 5.515808 4.349955 4.534835 3.744991 2.510988 100
apply+sum 172.313157 164.209353 132.357075 135.280933 112.502904 79.498100 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+10x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 16.090 17.1900 22.6740 20.080 26.1005 40.684 100
rowCounts 17.991 19.3095 25.0942 23.769 29.5245 52.373 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.118148 1.123298 1.106739 1.183715 1.131185 1.287312 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.102628 0.1047720 0.1154164 0.1142385 0.1261055 0.135459 100
colSums 0.801134 0.8090535 1.0734457 0.8200350 0.8711975 2.691553 100
apply+sum 4.710071 4.7907695 5.5991978 4.8378280 5.0479450 47.196851 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 100
colSums 7.806193 7.722039 9.300632 7.178272 6.908481 19.86987 100
apply+sum 45.894600 45.725666 48.513009 42.348490 40.029539 348.42167 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.124136 0.1270195 0.1359501 0.1363150 0.142851 0.155579 100
rowSums 0.961554 0.9696845 1.1350187 0.9757305 1.006057 2.769947 100
apply+sum 4.694080 4.8420400 5.4685971 4.9833810 6.396341 7.366662 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.00000 100
rowSums 7.745972 7.634139 8.348788 7.15791 7.042702 17.80412 100
apply+sum 37.814010 38.120446 40.225026 36.55783 44.776312 47.34998 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+100x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 102.628 104.7720 115.4164 114.2385 126.1055 135.459 100
rowCounts 124.136 127.0195 135.9501 136.3150 142.8510 155.579 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.00000 1.000000 1.00000 1.000000 100
rowCounts 1.209572 1.212342 1.17791 1.193249 1.13279 1.148532 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.095672 0.098738 0.1064356 0.1066160 0.111216 0.168510 100
colSums 0.794877 0.799742 1.3252402 0.8058195 0.834963 43.680496 100
apply+sum 1.962361 2.001254 2.2991458 2.0403005 2.882436 3.197454 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.00000 1.000000 1.00000 1.00000 100
colSums 8.308356 8.099637 12.45110 7.558148 7.50758 259.21605 100
apply+sum 20.511341 20.268331 21.60128 19.136907 25.91746 18.97486 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.129602 0.1312545 0.1378455 0.1356315 0.144935 0.158294 100
rowSums 0.967389 0.9709875 1.1009219 0.9746685 0.987880 1.985198 100
apply+sum 1.988194 2.0135090 2.2640658 2.0473515 2.456067 3.048246 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 100
rowSums 7.464306 7.397746 7.986636 7.186151 6.816021 12.54121 100
apply+sum 15.340766 15.340495 16.424662 15.094956 16.945990 19.25686 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on integer+1000x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 95.672 98.7380 106.4356 106.6160 111.216 168.510 100
rowCounts 129.602 131.2545 137.8455 135.6315 144.935 158.294 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.0000000 100
rowCounts 1.354649 1.329321 1.295107 1.27215 1.303185 0.9393745 100
Figure: Benchmarking of colCounts() and rowCounts() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type "double"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 matrix

> X <- data[["10x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.005936 0.0067245 0.0079858 0.0077115 0.008852 0.024094 100
colSums 0.007372 0.0082060 0.0092560 0.0094550 0.009833 0.018231 100
apply+sum 0.055647 0.0572880 0.0590818 0.0583645 0.059017 0.112597 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100
colSums 1.241914 1.220314 1.159062 1.226091 1.110822 0.7566614 100
apply+sum 9.374495 8.519295 7.398353 7.568502 6.667081 4.6732382 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.006034 0.0067830 0.0079523 0.0073420 0.0088265 0.023782 100
rowSums 0.006896 0.0076980 0.0087938 0.0088325 0.0094700 0.015982 100
apply+sum 0.055437 0.0573025 0.0592130 0.0580355 0.0592000 0.114266 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.00000 1.000000 1.0000000 100
rowSums 1.142857 1.134896 1.105830 1.20301 1.072906 0.6720209 100
apply+sum 9.187438 8.447958 7.446059 7.90459 6.707075 4.8047263 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+10x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
2 rowCounts 6.034 6.7830 7.95226 7.3420 8.8265 23.782 100
1 colCounts 5.936 6.7245 7.98580 7.7115 8.8520 24.094 100
expr min lq mean median uq max neval
2 rowCounts 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000 100
1 colCounts 0.9837587 0.9913755 1.004218 1.050327 1.002889 1.013119 100
Figure: Benchmarking of colCounts() and rowCounts() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.034769 0.0361295 0.0386138 0.0381915 0.0391920 0.064935 100
colSums 0.078908 0.0798225 0.0819926 0.0809350 0.0820820 0.095816 100
apply+sum 0.454868 0.4620650 0.5110225 0.4718755 0.4865935 2.280414 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000 100
colSums 2.269493 2.209344 2.12340 2.119189 2.094356 1.475568 100
apply+sum 13.082574 12.789134 13.23418 12.355511 12.415633 35.118411 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.043411 0.044414 0.0467659 0.046210 0.0469590 0.068058 100
rowSums 0.094850 0.096010 0.1142993 0.096805 0.0973495 1.748354 100
apply+sum 0.455404 0.461539 0.4849037 0.464896 0.4720785 2.129474 100
expr min lq mean median uq max neval
rowCounts 1.00000 1.000000 1.000000 1.000000 1.000000 1.00000 100
rowSums 2.18493 2.161706 2.444074 2.094893 2.073074 25.68918 100
apply+sum 10.49052 10.391746 10.368746 10.060506 10.052993 31.28911 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+100x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 34.769 36.1295 38.61383 38.1915 39.192 64.935 100
rowCounts 43.411 44.4140 46.76590 46.2100 46.959 68.058 100
expr min lq mean median uq max neval
colCounts 1.000000 1.0000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.248555 1.2293 1.211118 1.209955 1.198178 1.048094 100
Figure: Benchmarking of colCounts() and rowCounts() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.034373 0.0349355 0.0369176 0.036364 0.0372620 0.052782 100
colSums 0.078095 0.0787855 0.0807346 0.079753 0.0803150 0.121939 100
apply+sum 0.211868 0.2134145 0.2366454 0.214333 0.2164105 1.222975 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.271987 2.255170 2.186888 2.193186 2.155413 2.310238 100
apply+sum 6.163791 6.108815 6.410100 5.894099 5.807807 23.170304 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.044714 0.0457965 0.0491711 0.0479145 0.0496450 0.079371 100
rowSums 0.096121 0.0970720 0.0993996 0.0980085 0.0988460 0.114416 100
apply+sum 0.212571 0.2147905 0.2420802 0.2168910 0.2319675 1.194826 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.149685 2.119638 2.021503 2.045487 1.991057 1.441534 100
apply+sum 4.754014 4.690107 4.923218 4.526626 4.672525 15.053685 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+1000x10 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 34.373 34.9355 36.91759 36.3640 37.262 52.782 100
rowCounts 44.714 45.7965 49.17114 47.9145 49.645 79.371 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.300847 1.310887 1.331916 1.317636 1.332323 1.503751 100
Figure: Benchmarking of colCounts() and rowCounts() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.037057 0.0384665 0.0438680 0.0415665 0.0487650 0.061573 100
colSums 0.080396 0.0821550 0.0854611 0.0840240 0.0882245 0.102324 100
apply+sum 2.720326 2.7820100 2.9387916 2.8537620 2.9454385 3.949417 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.169523 2.135755 1.948144 2.021435 1.809177 1.661832 100
apply+sum 73.409234 72.322930 66.991754 68.655335 60.400666 64.142027 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.042923 0.0444465 0.0493494 0.0479680 0.0539025 0.071507 100
rowSums 0.096006 0.0973235 0.1001528 0.0988215 0.1022085 0.115077 100
apply+sum 2.729340 2.7744635 2.9178261 2.8183935 2.9185295 3.876591 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.236703 2.189678 2.029464 2.060155 1.896174 1.609311 100
apply+sum 63.586888 62.422542 59.125867 58.755702 54.144604 54.212748 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+10x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 37.057 38.4665 43.86796 41.5665 48.7650 61.573 100
rowCounts 42.923 44.4465 49.34940 47.9680 53.9025 71.507 100
expr min lq mean median uq max neval
colCounts 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.158297 1.15546 1.124953 1.154006 1.105352 1.161337 100
Figure: Benchmarking of colCounts() and rowCounts() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.295140 0.2969465 0.3087949 0.3070985 0.3171555 0.357848 100
colSums 0.714855 0.7171400 0.7795327 0.7264470 0.7355420 2.132311 100
apply+sum 4.280087 4.3487345 5.3278862 4.4174840 5.8508735 47.168773 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.422088 2.415048 2.524435 2.365518 2.319184 5.958706 100
apply+sum 14.501887 14.644842 17.253802 14.384583 18.447965 131.812314 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.371308 0.374305 0.3836680 0.382210 0.3900715 0.427003 100
rowSums 0.875715 0.878525 0.9894834 0.884685 0.8998235 2.553067 100
apply+sum 4.332604 4.422945 5.0157825 4.582655 5.9243640 6.633233 100
expr min lq mean median uq max neval
rowCounts 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.35846 2.347083 2.579009 2.314657 2.306817 5.979038 100
apply+sum 11.66849 11.816420 13.073235 11.989888 15.187893 15.534394 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+100x1000 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 295.140 296.9465 308.7949 307.0985 317.1555 357.848 100
rowCounts 371.308 374.3050 383.6680 382.2100 390.0715 427.003 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.258074 1.260513 1.242469 1.244584 1.229906 1.193252 100
Figure: Benchmarking of colCounts() and rowCounts() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> value <- 42
> colStats <- microbenchmark(colCounts = colCounts(X, value = value, na.rm = FALSE), colSums = colSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")
> X <- t(X)
> rowStats <- microbenchmark(rowCounts = rowCounts(X, value = value, na.rm = FALSE), rowSums = rowSums(X == 
+     value, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = function(x) sum(x == value, 
+     na.rm = FALSE)), unit = "ms")

Table: Benchmarking of colCounts(), colSums() and apply+sum() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 0.287993 0.2892030 0.2994595 0.2959355 0.3058125 0.351222 100
colSums 0.708476 0.7099995 0.7534923 0.7157475 0.7262620 1.709930 100
apply+sum 1.848825 1.8611890 2.5727953 1.8875580 2.7690475 43.493654 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
colSums 2.460046 2.455021 2.516174 2.418593 2.374860 4.868516 100
apply+sum 6.419687 6.435580 8.591462 6.378275 9.054723 123.835221 100
Table: Benchmarking of rowCounts(), rowSums() and apply+sum() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max neval
rowCounts 0.377871 0.380023 0.3891483 0.385470 0.3955075 0.418472 100
rowSums 0.881318 0.883883 0.9300696 0.887365 0.9021165 1.861215 100
apply+sum 1.879640 1.907911 2.6588699 1.943134 2.8218000 44.852003 100
expr min lq mean median uq max neval
rowCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowSums 2.332325 2.325867 2.390013 2.302034 2.280909 4.447645 100
apply+sum 4.974290 5.020516 6.832536 5.040949 7.134631 107.180416 100
Figure: Benchmarking of colCounts(), colSums() and apply+sum() on double+1000x100 data as well as rowCounts(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCounts() and rowCounts() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max neval
colCounts 287.993 289.203 299.4595 295.9355 305.8125 351.222 100
rowCounts 377.871 380.023 389.1483 385.4700 395.5075 418.472 100
expr min lq mean median uq max neval
colCounts 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
rowCounts 1.312084 1.314035 1.299502 1.302547 1.293301 1.191474 100
Figure: Benchmarking of colCounts() and rowCounts() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.4       microbenchmark_1.4-2 matrixStats_0.14.0  
[4] ggplot2_1.0.1        knitr_1.9            R.devices_2.13.0    
[7] R.utils_2.0.0        R.oo_1.19.0          R.methodsS3_1.7.0   

loaded via a namespace (and not attached):
 [1] base64enc_0.1-2  colorspace_1.2-6 digest_0.6.8     evaluate_0.5.5  
 [5] formatR_1.1      grid_3.0.2       gtable_0.1.2     labeling_0.3    
 [9] MASS_7.3-29      mime_0.2         munsell_0.4.2    plyr_1.8.1      
[13] proto_0.3-10     R.cache_0.10.0   Rcpp_0.11.5      reshape2_1.4.1  
[17] R.rsp_0.20.0     scales_0.2.4     stringr_0.6.2    tools_3.0.2     

Total processing time was 23.32 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colCounts')

Copyright Henrik Bengtsson. Last updated on 2015-04-18 19:54:09 (+0000 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally