Skip to content

indexByRow

hb edited this page Mar 3, 2015 · 2 revisions

matrixStats: Benchmark report


indexByRow() benchmarks

This report benchmark the performance of indexByRow() against alternative methods:

  • indexByRow_R1() based in matrix(..., byrow=TRUE)
  • indexByRow_R2() is a modified version of indexByRow_R1()

where indexByRow_R1() and indexByRow_R2() are defined as in the Appendix.

Data

> data <- rmatrices(mode = "index")

where rmatrices() is defined in the Appendix.

Results

10x10 matrix

> X <- data[["10x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.0077 0.0129 0.0160 0.0146 0.0166 0.0658
indexByRow_R1 0.0077 0.0142 0.0177 0.0156 0.0177 0.0893
indexByRow_R2 0.0077 0.0142 0.0188 0.0156 0.0185 0.1921
expr min lq mean median uq max
indexByRow 1 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1 1.104 1.106 1.066 1.070 1.357
indexByRow_R2 1 1.104 1.171 1.066 1.116 2.918
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.0127 0.0152 0.0227 0.0177 0.0204 0.2976
indexByRow_R1 0.0162 0.0181 0.0260 0.0198 0.0239 0.2125
indexByRow_R2 0.0169 0.0196 0.0250 0.0208 0.0277 0.0781
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.0000
indexByRow_R1 1.273 1.190 1.149 1.119 1.170 0.7141
indexByRow_R2 1.333 1.291 1.102 1.174 1.359 0.2626
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
3 indexByRow_R2 0.0119 0.0141 0.0174 0.0158 0.0175 0.0404
1 indexByRow 0.0131 0.0156 0.0195 0.0181 0.0200 0.1143
2 indexByRow_R1 0.0158 0.0185 0.0227 0.0204 0.0227 0.0624
expr min lq mean median uq max
3 indexByRow_R2 1.000 1.000 1.000 1.000 1.000 1.000
1 indexByRow 1.097 1.110 1.120 1.146 1.143 2.829
2 indexByRow_R1 1.323 1.315 1.302 1.293 1.297 1.543
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 indexByRow 0.0177 0.0219 0.0302 0.0266 0.0341 0.0720
3 indexByRow_R2 0.1170 0.1190 0.1393 0.1205 0.1336 0.3033
2 indexByRow_R1 0.1170 0.1193 0.1433 0.1216 0.1447 0.2956
expr min lq mean median uq max
1 indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
3 indexByRow_R2 6.608 5.421 4.620 4.536 3.921 4.214
2 indexByRow_R1 6.608 5.438 4.753 4.580 4.248 4.107
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1109 0.1709 0.1917 0.1967 0.2233 0.3022
indexByRow_R1 0.1728 0.2695 0.2836 0.2947 0.3162 0.4465
indexByRow_R2 0.5801 0.7709 0.8210 0.8038 0.9216 1.2592
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1.559 1.577 1.479 1.498 1.416 1.478
indexByRow_R2 5.233 4.510 4.282 4.086 4.128 4.167
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1186 0.1247 0.1445 0.1324 0.1625 0.2148
indexByRow_R1 0.2729 0.2899 0.3031 0.2968 0.3105 0.4658
indexByRow_R2 0.3565 0.3830 0.3861 0.3863 0.3915 0.4123
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 2.302 2.324 2.098 2.241 1.911 2.168
indexByRow_R2 3.006 3.071 2.672 2.917 2.410 1.919
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.0304 0.0339 0.0389 0.0364 0.0400 0.0858
indexByRow_R1 0.1971 0.1998 0.2050 0.2009 0.2092 0.2983
indexByRow_R2 0.1963 0.1990 0.2050 0.2009 0.2102 0.2776
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 6.481 5.898 5.266 5.524 5.226 3.475
indexByRow_R2 6.455 5.875 5.264 5.524 5.250 3.233
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1113 0.1134 0.1480 0.1247 0.1719 0.2645
indexByRow_R1 0.1721 0.1763 0.2246 0.1825 0.2951 0.3892
indexByRow_R2 0.5582 0.5618 0.6793 0.5655 0.8486 1.0155
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1.547 1.555 1.518 1.463 1.717 1.472
indexByRow_R2 5.017 4.956 4.590 4.534 4.937 3.840
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1213 0.1292 0.1425 0.1355 0.1538 0.2144
indexByRow_R1 0.2656 0.2904 0.3008 0.3001 0.3091 0.3399
indexByRow_R2 0.3611 0.3828 0.3956 0.3942 0.4042 0.4797
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 2.191 2.249 2.111 2.215 2.010 1.585
indexByRow_R2 2.978 2.964 2.777 2.909 2.628 2.237
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.0289 0.0323 0.0396 0.0364 0.0395 0.1297
indexByRow_R1 0.1790 0.1840 0.1994 0.2027 0.2073 0.2518
indexByRow_R2 0.1763 0.1829 0.1988 0.2029 0.2092 0.2264
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 6.200 5.690 5.041 5.571 5.253 1.941
indexByRow_R2 6.106 5.655 5.026 5.577 5.302 1.745
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1744 0.2044 0.2352 0.2331 0.2510 0.4004
indexByRow_R1 0.2425 0.3078 0.3294 0.3259 0.3455 0.4877
indexByRow_R2 0.8126 0.9245 0.9443 0.9374 0.9607 1.1129
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1.391 1.506 1.401 1.398 1.377 1.218
indexByRow_R2 4.660 4.523 4.015 4.021 3.827 2.780
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.0755 0.0824 0.1198 0.1268 0.1411 0.2017
indexByRow_R1 0.1775 0.1882 0.2555 0.2808 0.3026 0.3857
indexByRow_R2 0.2776 0.2860 0.3788 0.4107 0.4473 0.5131
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 2.352 2.285 2.133 2.214 2.145 1.912
indexByRow_R2 3.679 3.472 3.162 3.238 3.171 2.544
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1163 0.2215 0.2909 0.2593 0.3642 0.5532
indexByRow_R1 1.1275 1.4767 1.8302 1.7702 2.1219 2.6523
indexByRow_R2 1.1271 1.6638 2.0902 1.8353 2.2481 21.8200
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 9.699 6.665 6.292 6.828 5.827 4.795
indexByRow_R2 9.695 7.510 7.185 7.079 6.173 39.445
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 1.068 1.648 1.889 1.843 2.053 3.886
indexByRow_R1 1.779 2.751 3.454 3.054 3.545 27.781
indexByRow_R2 6.295 7.829 9.726 9.376 10.414 32.519
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1.666 1.669 1.828 1.657 1.727 7.149
indexByRow_R2 5.896 4.751 5.149 5.088 5.074 8.368
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 1.090 1.200 1.361 1.272 1.361 3.706
indexByRow_R1 2.753 3.014 4.098 3.236 3.683 35.035
indexByRow_R2 3.332 4.046 4.641 4.257 4.728 18.979
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 2.526 2.511 3.011 2.544 2.706 9.453
indexByRow_R2 3.057 3.372 3.410 3.346 3.475 5.121
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set 'all-by-NULL'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.1859 0.2385 0.3671 0.2514 0.4054 6.04
indexByRow_R1 1.6580 2.0123 2.3841 2.1594 2.6747 7.32
indexByRow_R2 1.6796 2.0021 2.5473 2.2491 2.6683 19.24
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 8.917 8.438 6.495 8.590 6.598 1.212
indexByRow_R2 9.033 8.395 6.940 8.947 6.583 3.185
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'all'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 1.134 1.643 1.776 1.712 1.874 5.208
indexByRow_R1 1.987 2.814 3.138 3.008 3.412 8.191
indexByRow_R2 6.961 8.099 9.872 8.717 9.719 45.456
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.000
indexByRow_R1 1.752 1.713 1.766 1.758 1.820 1.573
indexByRow_R2 6.138 4.930 5.557 5.093 5.186 8.727
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set 'odd'

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
indexByRow 0.681 1.115 1.372 1.214 1.296 17.532
indexByRow_R1 1.797 2.836 2.982 2.972 3.187 6.456
indexByRow_R2 2.896 3.826 4.104 4.007 4.485 7.450
expr min lq mean median uq max
indexByRow 1.000 1.000 1.000 1.000 1.000 1.0000
indexByRow_R1 2.639 2.545 2.174 2.448 2.459 0.3683
indexByRow_R2 4.253 3.433 2.992 3.300 3.461 0.4250
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4           GenomeInfoDb_1.3.13   formatR_1.0.3        
 [4] plyr_1.8.1            base64enc_0.1-3       tools_3.2.0          
 [7] digest_0.6.8          RSQLite_1.0.0         annotate_1.45.2      
[10] evaluate_0.5.7        gtable_0.1.2          R.cache_0.11.1-9000  
[13] lattice_0.20-30       DBI_0.3.1             parallel_3.2.0       
[16] mvtnorm_1.0-2         proto_0.3-10          R.rsp_0.20.0         
[19] genefilter_1.49.2     stringr_0.6.2         IRanges_2.1.41       
[22] S4Vectors_0.5.21      stats4_3.2.0          grid_3.2.0           
[25] Biobase_2.27.2        AnnotationDbi_1.29.17 XML_3.98-1.1         
[28] survival_2.38-1       multcomp_1.3-9        TH.data_1.0-6        
[31] reshape2_1.4.1        scales_0.2.4          MASS_7.3-39          
[34] splines_3.2.0         BiocGenerics_0.13.6   xtable_1.8-0         
[37] mime_0.2.1            colorspace_1.2-4      labeling_0.3         
[40] sandwich_2.3-2        munsell_0.4.2         Cairo_1.5-6          
[43] zoo_1.7-12           

Total processing time was 33.31 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('indexByRow')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:27:44 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

Local functions

> indexByRow_R1 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+     if (!is.null(idxs)) 
+         x <- x[idxs]
+     as.vector(x)
+ }
> indexByRow_R2 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     if (is.null(idxs)) {
+         x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+         as.vector(x)
+     }     else {
+         idxs <- idxs - 1
+         cols <- idxs%/%dim[2L]
+         rows <- idxs%%dim[2L]
+         cols + dim[1L] * rows + 1L
+     }
+ }
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }

[Benchmark reports](Benchmark reports)

Clone this wiki locally