-
Notifications
You must be signed in to change notification settings - Fork 0
colRowOrderStats
matrixStats: Benchmark report
This report benchmark the performance of colOrderStats() and rowOrderStats() against alternative methods.
- apply() + quantile(..., type=3L)
- Biobase::rowQ()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 802765 42.9 1442291 77.1 1168576 62.5
Vcells 12278847 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801324 42.8 1442291 77.1 1442291 77.1
Vcells 12274701 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.0035 | 0.0058 | 0.0146 | 0.0125 | 0.0214 | 0.1228 |
| 3 | rowQ(t(X)) | 0.0524 | 0.0689 | 0.1069 | 0.1143 | 0.1344 | 0.2429 |
| 2 | apply+quantile | 1.7716 | 1.8141 | 2.2346 | 1.9450 | 2.5963 | 5.3366 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.00 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 15.11 | 11.93 | 7.32 | 9.138 | 6.288 | 1.978 |
| 2 | apply+quantile | 511.27 | 314.10 | 153.07 | 155.449 | 121.519 | 43.457 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.0035 | 0.0073 | 0.0164 | 0.0150 | 0.0221 | 0.1290 |
| 3 | rowQ | 0.0362 | 0.0581 | 0.0881 | 0.0708 | 0.1184 | 0.2156 |
| 2 | apply+quantile | 1.7739 | 2.1457 | 2.4533 | 2.5434 | 2.6096 | 5.8921 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.00 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 10.44 | 7.947 | 5.38 | 4.718 | 5.348 | 1.672 |
| 2 | apply+quantile | 511.94 | 293.333 | 149.80 | 169.396 | 117.889 | 45.689 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+10x10 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 3.465 | 5.776 | 14.60 | 12.51 | 21.37 | 122.8 |
| rowOrderStats | 3.465 | 7.315 | 16.38 | 15.01 | 22.14 | 129.0 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1 | 1.000 | 1.000 | 1.0 | 1.000 | 1.00 |
| rowOrderStats | 1 | 1.267 | 1.122 | 1.2 | 1.036 | 1.05 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801511 42.9 1442291 77.1 1442291 77.1
Vcells 12275910 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801504 42.9 1442291 77.1 1442291 77.1
Vcells 12281016 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.1386 | 0.1621 | 0.1788 | 0.1788 | 0.1956 | 0.3326 |
| 3 | rowQ(t(X)) | 0.5051 | 0.5913 | 0.7490 | 0.7393 | 0.8071 | 4.3123 |
| 2 | apply+quantile | 18.0370 | 21.5343 | 25.0443 | 25.6753 | 26.7304 | 42.4920 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | rowQ(t(X)) | 3.644 | 3.648 | 4.188 | 4.135 | 4.127 | 12.97 |
| 2 | apply+quantile | 130.152 | 132.873 | 140.047 | 143.588 | 136.688 | 127.76 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.1428 | 0.1555 | 0.1751 | 0.1728 | 0.1867 | 0.2933 |
| 3 | rowQ | 0.4735 | 0.4904 | 0.5913 | 0.5447 | 0.6725 | 1.0887 |
| 2 | apply+quantile | 18.2611 | 18.8400 | 23.2920 | 20.9669 | 23.9143 | 149.7863 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 3.315 | 3.154 | 3.378 | 3.151 | 3.602 | 3.711 |
| 2 | apply+quantile | 127.862 | 121.140 | 133.053 | 121.304 | 128.087 | 510.632 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+100x100 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowOrderStats | 142.8 | 155.5 | 175.1 | 172.8 | 186.7 | 293.3 |
| 1 | colOrderStats | 138.6 | 162.1 | 178.8 | 178.8 | 195.6 | 332.6 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowOrderStats | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colOrderStats | 0.9703 | 1.042 | 1.022 | 1.034 | 1.047 | 1.134 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801551 42.9 1442291 77.1 1442291 77.1
Vcells 12276151 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801544 42.9 1442291 77.1 1442291 77.1
Vcells 12281257 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.1220 | 0.1365 | 0.1519 | 0.1507 | 0.1648 | 0.1983 |
| 3 | rowQ(t(X)) | 0.4858 | 0.6575 | 0.7136 | 0.7418 | 0.7645 | 1.4120 |
| 2 | apply+quantile | 2.1915 | 2.7234 | 3.1879 | 3.3141 | 3.4688 | 9.0179 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowQ(t(X)) | 3.981 | 4.818 | 4.697 | 4.922 | 4.64 | 7.122 |
| 2 | apply+quantile | 17.959 | 19.956 | 20.983 | 21.990 | 21.05 | 45.487 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.1317 | 0.1559 | 0.1793 | 0.1723 | 0.1934 | 0.9682 |
| 3 | rowQ | 0.4473 | 0.5846 | 0.6536 | 0.6513 | 0.7100 | 2.4529 |
| 2 | apply+quantile | 2.2986 | 3.2236 | 3.4544 | 3.4057 | 3.6111 | 9.4714 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 3.398 | 3.749 | 3.646 | 3.781 | 3.671 | 2.534 |
| 2 | apply+quantile | 17.459 | 20.676 | 19.269 | 19.770 | 18.668 | 9.783 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+1000x10 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 122.0 | 136.5 | 151.9 | 150.7 | 164.8 | 198.3 |
| rowOrderStats | 131.7 | 155.9 | 179.3 | 172.3 | 193.4 | 968.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| rowOrderStats | 1.079 | 1.143 | 1.18 | 1.143 | 1.174 | 4.883 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801581 42.9 1442291 77.1 1442291 77.1
Vcells 12276875 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801574 42.9 1442291 77.1 1442291 77.1
Vcells 12281981 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.1436 | 0.1632 | 0.1843 | 0.1715 | 0.1882 | 0.9616 |
| 3 | rowQ(t(X)) | 0.4908 | 0.6036 | 0.6808 | 0.6331 | 0.7591 | 1.4701 |
| 2 | apply+quantile | 198.0534 | 220.5612 | 238.4357 | 237.3883 | 253.2588 | 379.7250 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 3.418 | 3.698 | 3.694 | 3.691 | 4.033 | 1.529 |
| 2 | apply+quantile | 1379.307 | 1351.304 | 1293.645 | 1384.201 | 1345.379 | 394.883 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.1440 | 0.1584 | 0.1774 | 0.1740 | 0.1854 | 0.2421 |
| 3 | rowQ | 0.4558 | 0.4868 | 0.5726 | 0.5565 | 0.6309 | 0.9197 |
| 2 | apply+quantile | 196.4350 | 212.4889 | 228.4554 | 224.2445 | 240.5667 | 357.8924 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 3.166 | 3.073 | 3.227 | 3.198 | 3.404 | 3.798 |
| 2 | apply+quantile | 1364.378 | 1341.390 | 1287.441 | 1288.761 | 1297.860 | 1478.057 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+10x1000 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 143.6 | 163.2 | 184.3 | 171.5 | 188.2 | 961.6 |
| rowOrderStats | 144.0 | 158.4 | 177.4 | 174.0 | 185.4 | 242.1 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
| rowOrderStats | 1.003 | 0.9705 | 0.9628 | 1.015 | 0.9847 | 0.2518 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801625 42.9 1442291 77.1 1442291 77.1
Vcells 12277302 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801618 42.9 1442291 77.1 1442291 77.1
Vcells 12327408 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.365 | 1.396 | 1.562 | 1.468 | 1.718 | 2.163 |
| 3 | rowQ(t(X)) | 5.093 | 5.207 | 6.128 | 5.491 | 6.977 | 19.327 |
| 2 | apply+quantile | 200.416 | 226.750 | 243.862 | 241.777 | 260.357 | 349.187 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 3.731 | 3.729 | 3.922 | 3.739 | 4.061 | 8.935 |
| 2 | apply+quantile | 146.820 | 162.380 | 156.070 | 164.653 | 151.542 | 161.432 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.466 | 1.523 | 1.633 | 1.541 | 1.756 | 2.365 |
| 3 | rowQ | 4.829 | 4.946 | 5.753 | 5.382 | 6.456 | 9.347 |
| 2 | apply+quantile | 204.134 | 233.113 | 248.974 | 245.885 | 262.553 | 359.096 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 3.293 | 3.248 | 3.524 | 3.493 | 3.676 | 3.952 |
| 2 | apply+quantile | 139.218 | 153.093 | 152.514 | 159.605 | 149.487 | 151.828 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+100x1000 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.365 | 1.396 | 1.562 | 1.468 | 1.718 | 2.163 |
| rowOrderStats | 1.466 | 1.523 | 1.633 | 1.541 | 1.756 | 2.365 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowOrderStats | 1.074 | 1.09 | 1.045 | 1.049 | 1.022 | 1.093 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801647 42.9 1442291 77.1 1442291 77.1
Vcells 12277838 93.7 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801649 42.9 1442291 77.1 1442291 77.1
Vcells 12327959 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.263 | 1.323 | 1.466 | 1.396 | 1.538 | 2.567 |
| 3 | rowQ(t(X)) | 5.149 | 5.342 | 6.802 | 7.205 | 7.732 | 10.335 |
| 2 | apply+quantile | 21.900 | 27.126 | 31.508 | 30.887 | 34.894 | 62.135 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 4.078 | 4.037 | 4.641 | 5.161 | 5.027 | 4.026 |
| 2 | apply+quantile | 17.345 | 20.496 | 21.498 | 22.125 | 22.687 | 24.206 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.412 | 1.508 | 1.657 | 1.580 | 1.790 | 2.322 |
| 3 | rowQ | 4.913 | 5.002 | 5.773 | 5.132 | 6.682 | 9.031 |
| 2 | apply+quantile | 22.642 | 24.546 | 28.343 | 27.020 | 32.053 | 45.068 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 3.478 | 3.318 | 3.483 | 3.249 | 3.734 | 3.889 |
| 2 | apply+quantile | 16.031 | 16.283 | 17.100 | 17.105 | 17.912 | 19.405 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on integer+1000x100 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.263 | 1.323 | 1.466 | 1.396 | 1.538 | 2.567 |
| rowOrderStats | 1.412 | 1.508 | 1.657 | 1.580 | 1.790 | 2.322 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| rowOrderStats | 1.119 | 1.139 | 1.131 | 1.131 | 1.163 | 0.9048 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801702 42.9 1442291 77.1 1442291 77.1
Vcells 12393570 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801686 42.9 1442291 77.1 1442291 77.1
Vcells 12393761 94.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.005 | 0.0083 | 0.0176 | 0.0129 | 0.0296 | 0.0366 |
| 3 | rowQ(t(X)) | 0.025 | 0.0418 | 0.0792 | 0.0697 | 0.1201 | 0.1959 |
| 2 | apply+quantile | 1.769 | 2.1020 | 2.6685 | 2.7164 | 2.9549 | 7.0812 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 5.0 | 5.046 | 4.497 | 5.403 | 4.052 | 5.358 |
| 2 | apply+quantile | 353.5 | 253.946 | 151.611 | 210.633 | 99.686 | 193.624 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.0058 | 0.0077 | 0.0169 | 0.0158 | 0.0246 | 0.0343 |
| 3 | rowQ | 0.0146 | 0.0227 | 0.0474 | 0.0331 | 0.0743 | 0.1309 |
| 2 | apply+quantile | 1.7885 | 1.8997 | 2.5092 | 2.5726 | 2.7692 | 5.7085 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | rowQ | 2.533 | 2.95 | 2.808 | 2.098 | 3.015 | 3.82 |
| 2 | apply+quantile | 309.697 | 246.72 | 148.774 | 162.991 | 112.394 | 166.61 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+10x10 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 5.005 | 8.277 | 17.60 | 12.90 | 29.64 | 36.57 |
| rowOrderStats | 5.775 | 7.700 | 16.87 | 15.78 | 24.64 | 34.26 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
| rowOrderStats | 1.154 | 0.9302 | 0.9582 | 1.224 | 0.8312 | 0.9368 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801727 42.9 1442291 77.1 1442291 77.1
Vcells 12394371 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801720 42.9 1442291 77.1 1442291 77.1
Vcells 12404477 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.3345 | 0.3467 | 0.3990 | 0.3640 | 0.4475 | 0.5355 |
| 3 | rowQ(t(X)) | 0.4600 | 0.4756 | 0.5617 | 0.5463 | 0.6254 | 0.7822 |
| 2 | apply+quantile | 18.9378 | 19.7749 | 23.8666 | 23.3303 | 26.6034 | 35.0639 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 1.375 | 1.372 | 1.408 | 1.501 | 1.397 | 1.461 |
| 2 | apply+quantile | 56.611 | 57.045 | 59.811 | 64.099 | 59.448 | 65.482 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.3361 | 0.3451 | 0.4156 | 0.3782 | 0.4791 | 0.6182 |
| 3 | rowQ | 0.4150 | 0.4417 | 0.5336 | 0.5495 | 0.5961 | 1.2734 |
| 2 | apply+quantile | 18.8989 | 20.3279 | 24.7056 | 24.8366 | 27.4876 | 37.1569 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | rowQ | 1.235 | 1.28 | 1.284 | 1.453 | 1.244 | 2.06 |
| 2 | apply+quantile | 56.236 | 58.90 | 59.452 | 65.668 | 57.376 | 60.10 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+100x100 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 334.5 | 346.7 | 399.0 | 364.0 | 447.5 | 535.5 |
| rowOrderStats | 336.1 | 345.1 | 415.6 | 378.2 | 479.1 | 618.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowOrderStats | 1.005 | 0.9956 | 1.041 | 1.039 | 1.071 | 1.155 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801767 42.9 1442291 77.1 1442291 77.1
Vcells 12395258 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801760 42.9 1442291 77.1 1442291 77.1
Vcells 12405364 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.2914 | 0.3047 | 0.3785 | 0.3819 | 0.4496 | 0.5135 |
| 3 | rowQ(t(X)) | 0.4154 | 0.4875 | 0.5790 | 0.5926 | 0.6675 | 0.7680 |
| 2 | apply+quantile | 2.5873 | 2.8306 | 3.6961 | 3.8580 | 4.1379 | 9.4040 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 1.425 | 1.60 | 1.530 | 1.552 | 1.485 | 1.496 |
| 2 | apply+quantile | 8.878 | 9.29 | 9.766 | 10.103 | 9.203 | 18.313 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.3049 | 0.3361 | 0.3957 | 0.4075 | 0.4267 | 0.5632 |
| 3 | rowQ | 0.3746 | 0.4654 | 0.5305 | 0.5359 | 0.5678 | 1.1618 |
| 2 | apply+quantile | 2.5480 | 3.3803 | 3.7994 | 3.9144 | 4.1454 | 9.4614 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 1.228 | 1.385 | 1.341 | 1.315 | 1.331 | 2.063 |
| 2 | apply+quantile | 8.357 | 10.058 | 9.601 | 9.607 | 9.714 | 16.800 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+1000x10 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 291.4 | 304.7 | 378.5 | 381.9 | 449.6 | 513.5 |
| rowOrderStats | 304.9 | 336.1 | 395.7 | 407.5 | 426.7 | 563.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 1.000 |
| rowOrderStats | 1.046 | 1.103 | 1.046 | 1.067 | 0.9491 | 1.097 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801797 42.9 1442291 77.1 1442291 77.1
Vcells 12395276 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801790 42.9 1442291 77.1 1442291 77.1
Vcells 12405382 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 0.3068 | 0.3197 | 0.3633 | 0.3390 | 0.3957 | 0.5436 |
| 3 | rowQ(t(X)) | 0.4338 | 0.4746 | 0.5524 | 0.5411 | 0.6007 | 0.7430 |
| 2 | apply+quantile | 194.3855 | 217.2599 | 235.5137 | 229.5844 | 246.9935 | 366.9353 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ(t(X)) | 1.414 | 1.485 | 1.521 | 1.596 | 1.518 | 1.367 |
| 2 | apply+quantile | 633.572 | 679.564 | 648.267 | 677.335 | 624.141 | 675.064 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 0.3072 | 0.3245 | 0.3855 | 0.3952 | 0.4358 | 0.5932 |
| 3 | rowQ | 0.3911 | 0.4365 | 0.4940 | 0.4716 | 0.5707 | 0.6575 |
| 2 | apply+quantile | 199.4311 | 221.7211 | 240.0376 | 235.4357 | 249.3340 | 404.2755 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowQ | 1.273 | 1.345 | 1.281 | 1.193 | 1.31 | 1.108 |
| 2 | apply+quantile | 649.202 | 683.234 | 622.682 | 595.804 | 572.17 | 681.499 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+10x1000 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 306.8 | 319.7 | 363.3 | 339.0 | 395.7 | 543.6 |
| rowOrderStats | 307.2 | 324.5 | 385.5 | 395.2 | 435.8 | 593.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowOrderStats | 1.001 | 1.015 | 1.061 | 1.166 | 1.101 | 1.091 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801841 42.9 1442291 77.1 1442291 77.1
Vcells 12396346 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801834 42.9 1442291 77.1 1442291 77.1
Vcells 12496452 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 3.320 | 3.340 | 3.855 | 3.394 | 4.530 | 5.630 |
| 3 | rowQ(t(X)) | 4.712 | 4.826 | 5.762 | 5.784 | 6.477 | 8.141 |
| 2 | apply+quantile | 216.073 | 237.575 | 254.872 | 249.764 | 264.340 | 394.454 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowQ(t(X)) | 1.419 | 1.445 | 1.495 | 1.704 | 1.43 | 1.446 |
| 2 | apply+quantile | 65.078 | 71.129 | 66.109 | 73.579 | 58.36 | 70.059 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 3.485 | 3.513 | 3.910 | 3.607 | 4.394 | 5.414 |
| 3 | rowQ | 4.279 | 4.315 | 5.046 | 4.895 | 5.711 | 6.686 |
| 2 | apply+quantile | 208.476 | 238.384 | 251.722 | 251.117 | 262.862 | 379.678 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowQ | 1.228 | 1.228 | 1.291 | 1.357 | 1.30 | 1.235 |
| 2 | apply+quantile | 59.828 | 67.863 | 64.380 | 69.612 | 59.82 | 70.129 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+100x1000 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 3.320 | 3.340 | 3.855 | 3.394 | 4.530 | 5.630 |
| rowOrderStats | 3.485 | 3.513 | 3.910 | 3.607 | 4.394 | 5.414 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.00 | 1.000 | 1.000 | 1.000 | 1.0000 | 1.0000 |
| rowOrderStats | 1.05 | 1.052 | 1.014 | 1.063 | 0.9701 | 0.9616 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801872 42.9 1442291 77.1 1442291 77.1
Vcells 12396365 94.6 35610798 271.7 68120027 519.8
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats = colOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 2L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), `rowQ(t(X))` = rowQ(t(X),
+ which = which), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 801865 42.9 1442291 77.1 1442291 77.1
Vcells 12496471 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowOrderStats = rowOrderStats(X, which = which, na.rm = FALSE), `apply+quantile` = apply(X,
+ MARGIN = 1L, FUN = quantile, probs = probs, na.rm = FALSE, type = 3L), rowQ = rowQ(X, which = which),
+ unit = "ms")Table: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 3.413 | 3.497 | 4.507 | 4.393 | 4.605 | 29.25 |
| 3 | rowQ(t(X)) | 4.753 | 5.410 | 6.513 | 6.693 | 7.153 | 12.54 |
| 2 | apply+quantile | 26.287 | 30.320 | 34.855 | 35.672 | 38.476 | 68.14 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 3 | rowQ(t(X)) | 1.392 | 1.547 | 1.445 | 1.524 | 1.553 | 0.4286 |
| 2 | apply+quantile | 7.701 | 8.670 | 7.733 | 8.120 | 8.356 | 2.3291 |
| Table: Benchmarking of rowOrderStats(), apply+quantile() and rowQ() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 3.637 | 3.679 | 4.367 | 4.471 | 4.883 | 6.375 |
| 3 | rowQ | 4.408 | 4.481 | 5.327 | 5.052 | 6.099 | 7.183 |
| 2 | apply+quantile | 26.883 | 31.897 | 34.560 | 34.341 | 37.180 | 45.913 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowOrderStats | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowQ | 1.212 | 1.218 | 1.220 | 1.130 | 1.249 | 1.127 |
| 2 | apply+quantile | 7.391 | 8.671 | 7.913 | 7.681 | 7.614 | 7.202 |
| Figure: Benchmarking of colOrderStats(), apply+quantile() and rowQ(t(X))() on double+1000x100 data as well as rowOrderStats(), apply+quantile() and rowQ() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colOrderStats() and rowOrderStats() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 3.413 | 3.497 | 4.507 | 4.393 | 4.605 | 29.254 |
| rowOrderStats | 3.637 | 3.679 | 4.367 | 4.471 | 4.883 | 6.375 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colOrderStats | 1.000 | 1.000 | 1.0000 | 1.000 | 1.00 | 1.0000 |
| rowOrderStats | 1.065 | 1.052 | 0.9689 | 1.018 | 1.06 | 0.2179 |
| Figure: Benchmarking of colOrderStats() and rowOrderStats() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 BiocGenerics_0.13.6 splines_3.2.0
[4] MASS_7.3-39 munsell_0.4.2 lattice_0.20-30
[7] colorspace_1.2-4 R.cache_0.11.1-9000 multcomp_1.3-9
[10] stringr_0.6.2 plyr_1.8.1 tools_3.2.0
[13] parallel_3.2.0 grid_3.2.0 Biobase_2.27.2
[16] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[19] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[22] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[25] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[28] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[31] Cairo_1.5-6 proto_0.3-10 Total processing time was 4.38 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('colOrderStats')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:14:58 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)