Skip to content

colRowSums

hb edited this page Mar 3, 2015 · 2 revisions

matrixStats: Benchmark report


colSums() and rowSums() benchmarks

This report benchmark the performance of colSums() and rowSums() against alternative methods.

Alternative methods

  • .colSums() and .rowSums()
  • apply() + sum()

Data type "integer"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 integer matrix

> X <- data[["10x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   806945 43.1    1442291  77.1  1442291  77.1
Vcells 12283605 93.8   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805392 43.1    1442291  77.1  1442291  77.1
Vcells 12279209 93.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0027 0.0038 0.0049 0.0046 0.0052 0.0219
1 colSums 0.0054 0.0067 0.0101 0.0092 0.0106 0.0604
3 apply+sum 0.0562 0.0589 0.0732 0.0601 0.0860 0.2637
expr min lq mean median uq max
2 .colSums 1.00 1.00 1.000 1 1.000 1.000
1 colSums 2.00 1.75 2.083 2 2.037 2.754
3 apply+sum 20.86 15.30 15.078 13 16.552 12.017
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0046 0.0058 0.0071 0.0067 0.0077 0.0216
1 rowSums 0.0100 0.0115 0.0205 0.0231 0.0266 0.0397
3 apply+sum 0.0897 0.1174 0.1292 0.1292 0.1399 0.3237
expr min lq mean median uq max
2 .rowSums 1.000 1.00 1.00 1.000 1.00 1.000
1 rowSums 2.167 2.00 2.90 3.428 3.45 1.839
3 apply+sum 19.415 20.33 18.28 19.168 18.17 15.017
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 5.39 6.738 10.11 9.24 10.59 60.44
rowSums 10.01 11.550 20.50 23.10 26.56 39.65
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.0 1.000 1.0000
rowSums 1.857 1.714 2.027 2.5 2.509 0.6561
Figure: Benchmarking of colSums() and rowSums() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix

> X <- data[["100x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805459 43.1    1442291  77.1  1442291  77.1
Vcells 12280395 93.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805453 43.1    1442291  77.1  1442291  77.1
Vcells 12285438 93.8   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0131 0.0202 0.0255 0.0268 0.0296 0.0385
1 colSums 0.0166 0.0233 0.0361 0.0360 0.0466 0.0631
3 apply+sum 0.3907 0.4685 0.6268 0.6843 0.7264 0.8735
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.00
1 colSums 1.265 1.152 1.417 1.345 1.571 1.64
3 apply+sum 29.852 23.180 24.608 25.575 24.506 22.69
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0346 0.0358 0.0444 0.0387 0.0535 0.0932
1 rowSums 0.0377 0.0393 0.0508 0.0441 0.0583 0.0843
3 apply+sum 0.3865 0.4032 0.5759 0.4806 0.7395 1.6653
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.00 1.000
1 rowSums 1.089 1.097 1.144 1.139 1.09 0.905
3 apply+sum 11.155 11.263 12.972 12.423 13.82 17.876
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 16.55 23.29 36.10 35.99 46.58 63.13
rowSums 37.73 39.27 50.77 44.08 58.32 84.31
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.000
rowSums 2.279 1.686 1.407 1.225 1.252 1.335
Figure: Benchmarking of colSums() and rowSums() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix

> X <- data[["1000x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805499 43.1    1442291  77.1  1442291  77.1
Vcells 12280634 93.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805493 43.1    1442291  77.1  1442291  77.1
Vcells 12285677 93.8   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0123 0.0142 0.0196 0.0154 0.0264 0.0520
1 colSums 0.0154 0.0169 0.0272 0.0208 0.0341 0.0893
3 apply+sum 0.2329 0.2398 0.3221 0.3087 0.3917 0.4639
expr min lq mean median uq max
2 .colSums 1.00 1.000 1.000 1.00 1.000 1.000
1 colSums 1.25 1.189 1.389 1.35 1.292 1.718
3 apply+sum 18.90 16.837 16.470 20.05 14.853 8.926
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0462 0.0527 0.0548 0.0543 0.0560 0.0912
1 rowSums 0.0535 0.0602 0.0667 0.0643 0.0729 0.1109
3 apply+sum 0.3703 0.4092 0.4386 0.4296 0.4746 0.6433
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.000
1 rowSums 1.158 1.142 1.218 1.184 1.302 1.215
3 apply+sum 8.017 7.759 8.007 7.915 8.474 7.051
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 15.40 16.94 27.16 20.79 34.07 89.31
rowSums 53.51 60.25 66.75 64.29 72.95 110.87
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.000
rowSums 3.475 3.557 2.458 3.093 2.141 1.241
Figure: Benchmarking of colSums() and rowSums() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix

> X <- data[["10x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805529 43.1    1442291  77.1  1442291  77.1
Vcells 12281209 93.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805523 43.1    1442291  77.1  1442291  77.1
Vcells 12286252 93.8   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0146 0.0281 0.0339 0.0308 0.0448 0.0508
1 colSums 0.0173 0.0360 0.0490 0.0474 0.0653 0.1293
3 apply+sum 1.9190 3.4055 3.3434 3.5893 3.7106 6.7436
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.000
1 colSums 1.184 1.281 1.446 1.538 1.455 2.545
3 apply+sum 131.169 121.179 98.749 116.544 82.737 132.709
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0366 0.0527 0.0589 0.0566 0.0685 0.0847
1 rowSums 0.0400 0.0612 0.0744 0.0704 0.0926 0.1132
3 apply+sum 1.9479 3.4530 3.4980 3.6186 3.7290 14.4627
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.000
1 rowSums 1.095 1.161 1.264 1.245 1.351 1.336
3 apply+sum 53.261 65.473 59.432 63.945 54.421 170.770
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 17.32 35.99 48.97 47.35 65.25 129.3
rowSums 40.04 61.21 74.38 70.45 92.58 113.2
expr min lq mean median uq max
colSums 1.000 1.0 1.000 1.000 1.000 1.000
rowSums 2.311 1.7 1.519 1.488 1.419 0.875
Figure: Benchmarking of colSums() and rowSums() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix

> X <- data[["100x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805573 43.1    1442291  77.1  1442291  77.1
Vcells 12281605 93.8   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805567 43.1    1442291  77.1  1442291  77.1
Vcells 12331648 94.1   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.1136 0.1509 0.2103 0.2237 0.2543 0.2872
1 colSums 0.1197 0.1420 0.2144 0.2319 0.2699 0.3137
3 apply+sum 3.6255 4.5355 6.1318 6.3614 6.7223 22.7127
expr min lq mean median uq max
2 .colSums 1.000 1.0000 1.00 1.000 1.000 1.000
1 colSums 1.054 0.9413 1.02 1.037 1.061 1.093
3 apply+sum 31.925 30.0561 29.16 28.442 26.438 79.089
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.3191 0.3274 0.4181 0.4440 0.4756 0.6598
1 rowSums 0.3268 0.3642 0.4337 0.4602 0.4943 0.5316
3 apply+sum 3.6113 4.6069 6.6670 7.0670 7.7509 20.4214
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.0000
1 rowSums 1.024 1.112 1.037 1.036 1.039 0.8057
3 apply+sum 11.316 14.071 15.947 15.915 16.297 30.9504
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 119.7 142.0 214.4 231.9 269.9 313.7
rowSums 326.8 364.2 433.7 460.2 494.3 531.6
expr min lq mean median uq max
colSums 1.00 1.000 1.000 1.000 1.000 1.000
rowSums 2.73 2.564 2.023 1.984 1.832 1.694
Figure: Benchmarking of colSums() and rowSums() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix

> X <- data[["1000x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805604 43.1    1442291  77.1  1442291  77.1
Vcells 12282062 93.8   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805598 43.1    1442291  77.1  1442291  77.1
Vcells 12332105 94.1   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.1051 0.1116 0.1815 0.1958 0.2373 0.2841
1 colSums 0.1109 0.1538 0.2058 0.2240 0.2635 0.3495
3 apply+sum 2.0056 2.6448 3.0788 3.0633 3.7006 4.4162
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.00 1.00
1 colSums 1.055 1.378 1.134 1.145 1.11 1.23
3 apply+sum 19.084 23.691 16.966 15.649 15.59 15.54
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.3241 0.4194 0.4401 0.4671 0.4829 0.5097
1 rowSums 0.3291 0.4700 0.4715 0.4954 0.5083 0.5801
3 apply+sum 2.0302 3.2563 3.6153 3.7498 3.9554 5.1026
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.000
1 rowSums 1.015 1.121 1.071 1.061 1.053 1.138
3 apply+sum 6.264 7.764 8.214 8.027 8.191 10.011
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 110.9 153.8 205.8 224.0 263.5 349.5
rowSums 329.1 470.0 471.5 495.4 508.3 580.1
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.00
rowSums 2.969 3.056 2.291 2.211 1.929 1.66
Figure: Benchmarking of colSums() and rowSums() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type "double"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 double matrix

> X <- data[["10x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805650 43.1    1442291  77.1  1442291  77.1
Vcells 12397671 94.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805635 43.1    1442291  77.1  1442291  77.1
Vcells 12397799 94.6   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0042 0.0054 0.0064 0.0062 0.0073 0.0169
1 colSums 0.0092 0.0112 0.0168 0.0146 0.0229 0.0416
3 apply+sum 0.0855 0.0905 0.1164 0.1161 0.1297 0.2983
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.000
1 colSums 2.181 2.071 2.626 2.375 3.131 2.454
3 apply+sum 20.175 16.784 18.194 18.840 17.735 17.613
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0046 0.0062 0.0072 0.0073 0.0081 0.0158
1 rowSums 0.0104 0.0127 0.0161 0.0141 0.0162 0.1736
3 apply+sum 0.0870 0.0985 0.1071 0.1011 0.1032 0.5301
expr min lq mean median uq max
2 .rowSums 1.00 1.000 1.000 1.000 1.00 1.00
1 rowSums 2.25 2.062 2.236 1.921 2.00 11.00
3 apply+sum 18.83 15.998 14.859 13.814 12.76 33.58
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowSums 10.39 12.70 16.12 14.05 16.17 173.62
1 colSums 9.24 11.16 16.80 14.63 22.91 41.58
expr min lq mean median uq max
2 rowSums 1.000 1.0000 1.000 1.000 1.000 1.0000
1 colSums 0.889 0.8788 1.042 1.041 1.417 0.2395
Figure: Benchmarking of colSums() and rowSums() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix

> X <- data[["100x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805675 43.1    1442291  77.1  1442291  77.1
Vcells 12398411 94.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805669 43.1    1442291  77.1  1442291  77.1
Vcells 12408454 94.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0108 0.0129 0.0179 0.0160 0.0189 0.1251
1 colSums 0.0146 0.0206 0.0271 0.0246 0.0318 0.0597
3 apply+sum 0.3934 0.4706 0.6029 0.6608 0.7074 1.2523
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.0000
1 colSums 1.357 1.597 1.511 1.542 1.684 0.4769
3 apply+sum 36.499 36.488 33.598 41.359 37.499 10.0092
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0262 0.0273 0.0314 0.0293 0.0341 0.0758
1 rowSums 0.0293 0.0316 0.0398 0.0354 0.0448 0.0758
3 apply+sum 0.3896 0.4154 0.5039 0.4825 0.5243 0.7976
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.00 1.000 1.00
1 rowSums 1.118 1.155 1.265 1.21 1.316 1.00
3 apply+sum 14.882 15.197 16.030 16.49 15.390 10.52
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 14.63 20.60 27.11 24.64 31.76 59.67
rowSums 29.26 31.57 39.77 35.42 44.85 75.84
expr min lq mean median uq max
colSums 1 1.000 1.000 1.000 1.000 1.000
rowSums 2 1.533 1.467 1.438 1.412 1.271
Figure: Benchmarking of colSums() and rowSums() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix

> X <- data[["1000x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805715 43.1    1442291  77.1  1442291  77.1
Vcells 12399215 94.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805709 43.1    1442291  77.1  1442291  77.1
Vcells 12409258 94.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0123 0.0169 0.0186 0.0181 0.0200 0.0262
1 colSums 0.0154 0.0239 0.0274 0.0250 0.0296 0.1032
3 apply+sum 0.2314 0.3178 0.3969 0.4188 0.4675 0.5832
expr min lq mean median uq max
2 .colSums 1.00 1.000 1.00 1.000 1.000 1.000
1 colSums 1.25 1.409 1.47 1.383 1.481 3.941
3 apply+sum 18.78 18.760 21.28 23.148 23.354 22.279
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0373 0.0393 0.0451 0.0412 0.0427 0.2776
1 rowSums 0.0443 0.0483 0.0571 0.0572 0.0616 0.0947
3 apply+sum 0.3838 0.4054 0.4440 0.4329 0.4602 1.2080
expr min lq mean median uq max
2 .rowSums 1.000 1.00 1.000 1.000 1.000 1.0000
1 rowSums 1.186 1.23 1.265 1.388 1.441 0.3412
3 apply+sum 10.278 10.32 9.840 10.509 10.770 4.3523
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 15.40 23.87 27.41 25.02 29.64 103.2
rowSums 44.27 48.31 57.09 57.17 61.59 94.7
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.0000
rowSums 2.875 2.024 2.083 2.285 2.078 0.9179
Figure: Benchmarking of colSums() and rowSums() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix

> X <- data[["10x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805745 43.1    1442291  77.1  1442291  77.1
Vcells 12399233 94.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805739 43.1    1442291  77.1  1442291  77.1
Vcells 12409276 94.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0119 0.0139 0.0262 0.0210 0.037 0.0493
1 colSums 0.0158 0.0185 0.0380 0.0366 0.052 0.0951
3 apply+sum 1.9937 2.1394 3.0565 3.4386 3.681 7.2175
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.00
1 colSums 1.323 1.333 1.453 1.743 1.406 1.93
3 apply+sum 167.059 154.368 116.861 163.891 99.595 146.47
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.0277 0.0352 0.0428 0.0406 0.0500 0.0627
1 rowSums 0.0320 0.0481 0.0601 0.0595 0.0699 0.0959
3 apply+sum 2.0114 2.1149 3.0317 3.3112 3.7622 7.5085
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.000
1 rowSums 1.153 1.366 1.403 1.464 1.396 1.528
3 apply+sum 72.566 60.042 70.808 81.529 75.175 119.660
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 15.78 18.48 38.00 36.57 51.97 95.08
rowSums 31.95 48.12 60.07 59.48 69.87 95.85
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.000
rowSums 2.024 2.604 1.581 1.626 1.344 1.008
Figure: Benchmarking of colSums() and rowSums() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix

> X <- data[["100x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805789 43.1    1442291  77.1  1442291  77.1
Vcells 12400190 94.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805783 43.1    1442291  77.1  1442291  77.1
Vcells 12500233 95.4   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.0893 0.1178 0.1510 0.1272 0.1996 0.2521
1 colSums 0.0962 0.1263 0.1671 0.1453 0.2239 0.3626
3 apply+sum 3.6232 6.0942 6.2943 6.3165 6.7892 25.6360
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.000
1 colSums 1.078 1.072 1.107 1.142 1.121 1.438
3 apply+sum 40.569 51.735 41.697 49.647 34.014 101.671
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.2387 0.2812 0.3175 0.3282 0.3515 0.5663
1 rowSums 0.2460 0.3118 0.3485 0.3574 0.3848 0.5001
3 apply+sum 3.7791 6.3063 6.9822 6.9763 7.4048 28.5705
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.0000
1 rowSums 1.031 1.109 1.098 1.089 1.095 0.8831
3 apply+sum 15.834 22.426 21.994 21.258 21.068 50.4540
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 96.24 126.3 167.1 145.3 223.9 362.6
rowSums 245.99 311.8 348.5 357.4 384.8 500.1
expr min lq mean median uq max
colSums 1.000 1.00 1.000 1.00 1.000 1.000
rowSums 2.556 2.47 2.086 2.46 1.719 1.379
Figure: Benchmarking of colSums() and rowSums() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix

> X <- data[["1000x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805820 43.1    1442291  77.1  1442291  77.1
Vcells 12400209 94.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   805814 43.1    1442291  77.1  1442291  77.1
Vcells 12500252 95.4   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X), 
+     n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 .colSums 0.1012 0.1080 0.1463 0.1193 0.1944 0.3199
1 colSums 0.1078 0.1272 0.1731 0.1517 0.2331 0.3218
3 apply+sum 2.0183 2.8562 3.4913 3.4213 3.7648 13.8918
expr min lq mean median uq max
2 .colSums 1.000 1.000 1.000 1.000 1.000 1.000
1 colSums 1.065 1.178 1.183 1.271 1.199 1.006
3 apply+sum 19.935 26.451 23.861 28.669 19.366 43.426
Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
2 .rowSums 0.2437 0.2510 0.3148 0.3199 0.3549 0.4030
1 rowSums 0.2498 0.3049 0.3506 0.3493 0.3923 0.8454
3 apply+sum 2.1534 3.4057 4.2447 4.0776 4.9155 14.3457
expr min lq mean median uq max
2 .rowSums 1.000 1.000 1.000 1.000 1.000 1.000
1 rowSums 1.025 1.215 1.114 1.092 1.105 2.097
3 apply+sum 8.837 13.569 13.484 12.747 13.849 35.593
Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colSums() and rowSums() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colSums 107.8 127.2 173.1 151.7 233.1 321.8
rowSums 249.8 304.9 350.6 349.3 392.3 845.4
expr min lq mean median uq max
colSums 1.000 1.000 1.000 1.000 1.000 1.000
rowSums 2.318 2.396 2.025 2.303 1.683 2.627
Figure: Benchmarking of colSums() and rowSums() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4         BiocGenerics_0.13.6 splines_3.2.0      
 [4] MASS_7.3-39         munsell_0.4.2       lattice_0.20-30    
 [7] colorspace_1.2-4    R.cache_0.11.1-9000 multcomp_1.3-9     
[10] stringr_0.6.2       plyr_1.8.1          tools_3.2.0        
[13] parallel_3.2.0      grid_3.2.0          Biobase_2.27.2     
[16] gtable_0.1.2        TH.data_1.0-6       survival_2.38-1    
[19] digest_0.6.8        R.rsp_0.20.0        reshape2_1.4.1     
[22] formatR_1.0.3       base64enc_0.1-3     mime_0.2.1         
[25] evaluate_0.5.7      labeling_0.3        sandwich_2.3-2     
[28] scales_0.2.4        mvtnorm_1.0-2       zoo_1.7-12         
[31] Cairo_1.5-6         proto_0.3-10       

Total processing time was 40.78 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colSums')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:22:15 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally