-
Notifications
You must be signed in to change notification settings - Fork 0
colRowSums
matrixStats: Benchmark report
This report benchmark the performance of colSums() and rowSums() against alternative methods.
- .colSums() and .rowSums()
- apply() + sum()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 806945 43.1 1442291 77.1 1442291 77.1
Vcells 12283605 93.8 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805392 43.1 1442291 77.1 1442291 77.1
Vcells 12279209 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0027 | 0.0038 | 0.0049 | 0.0046 | 0.0052 | 0.0219 |
| 1 | colSums | 0.0054 | 0.0067 | 0.0101 | 0.0092 | 0.0106 | 0.0604 |
| 3 | apply+sum | 0.0562 | 0.0589 | 0.0732 | 0.0601 | 0.0860 | 0.2637 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.00 | 1.00 | 1.000 | 1 | 1.000 | 1.000 |
| 1 | colSums | 2.00 | 1.75 | 2.083 | 2 | 2.037 | 2.754 |
| 3 | apply+sum | 20.86 | 15.30 | 15.078 | 13 | 16.552 | 12.017 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0046 | 0.0058 | 0.0071 | 0.0067 | 0.0077 | 0.0216 |
| 1 | rowSums | 0.0100 | 0.0115 | 0.0205 | 0.0231 | 0.0266 | 0.0397 |
| 3 | apply+sum | 0.0897 | 0.1174 | 0.1292 | 0.1292 | 0.1399 | 0.3237 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.00 | 1.00 | 1.000 | 1.00 | 1.000 |
| 1 | rowSums | 2.167 | 2.00 | 2.90 | 3.428 | 3.45 | 1.839 |
| 3 | apply+sum | 19.415 | 20.33 | 18.28 | 19.168 | 18.17 | 15.017 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 5.39 | 6.738 | 10.11 | 9.24 | 10.59 | 60.44 |
| rowSums | 10.01 | 11.550 | 20.50 | 23.10 | 26.56 | 39.65 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.0 | 1.000 | 1.0000 |
| rowSums | 1.857 | 1.714 | 2.027 | 2.5 | 2.509 | 0.6561 |
| Figure: Benchmarking of colSums() and rowSums() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805459 43.1 1442291 77.1 1442291 77.1
Vcells 12280395 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805453 43.1 1442291 77.1 1442291 77.1
Vcells 12285438 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0131 | 0.0202 | 0.0255 | 0.0268 | 0.0296 | 0.0385 |
| 1 | colSums | 0.0166 | 0.0233 | 0.0361 | 0.0360 | 0.0466 | 0.0631 |
| 3 | apply+sum | 0.3907 | 0.4685 | 0.6268 | 0.6843 | 0.7264 | 0.8735 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | colSums | 1.265 | 1.152 | 1.417 | 1.345 | 1.571 | 1.64 |
| 3 | apply+sum | 29.852 | 23.180 | 24.608 | 25.575 | 24.506 | 22.69 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0346 | 0.0358 | 0.0444 | 0.0387 | 0.0535 | 0.0932 |
| 1 | rowSums | 0.0377 | 0.0393 | 0.0508 | 0.0441 | 0.0583 | 0.0843 |
| 3 | apply+sum | 0.3865 | 0.4032 | 0.5759 | 0.4806 | 0.7395 | 1.6653 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 1 | rowSums | 1.089 | 1.097 | 1.144 | 1.139 | 1.09 | 0.905 |
| 3 | apply+sum | 11.155 | 11.263 | 12.972 | 12.423 | 13.82 | 17.876 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 16.55 | 23.29 | 36.10 | 35.99 | 46.58 | 63.13 |
| rowSums | 37.73 | 39.27 | 50.77 | 44.08 | 58.32 | 84.31 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2.279 | 1.686 | 1.407 | 1.225 | 1.252 | 1.335 |
| Figure: Benchmarking of colSums() and rowSums() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805499 43.1 1442291 77.1 1442291 77.1
Vcells 12280634 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805493 43.1 1442291 77.1 1442291 77.1
Vcells 12285677 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0123 | 0.0142 | 0.0196 | 0.0154 | 0.0264 | 0.0520 |
| 1 | colSums | 0.0154 | 0.0169 | 0.0272 | 0.0208 | 0.0341 | 0.0893 |
| 3 | apply+sum | 0.2329 | 0.2398 | 0.3221 | 0.3087 | 0.3917 | 0.4639 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.00 | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 |
| 1 | colSums | 1.25 | 1.189 | 1.389 | 1.35 | 1.292 | 1.718 |
| 3 | apply+sum | 18.90 | 16.837 | 16.470 | 20.05 | 14.853 | 8.926 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0462 | 0.0527 | 0.0548 | 0.0543 | 0.0560 | 0.0912 |
| 1 | rowSums | 0.0535 | 0.0602 | 0.0667 | 0.0643 | 0.0729 | 0.1109 |
| 3 | apply+sum | 0.3703 | 0.4092 | 0.4386 | 0.4296 | 0.4746 | 0.6433 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | rowSums | 1.158 | 1.142 | 1.218 | 1.184 | 1.302 | 1.215 |
| 3 | apply+sum | 8.017 | 7.759 | 8.007 | 7.915 | 8.474 | 7.051 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 15.40 | 16.94 | 27.16 | 20.79 | 34.07 | 89.31 |
| rowSums | 53.51 | 60.25 | 66.75 | 64.29 | 72.95 | 110.87 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 3.475 | 3.557 | 2.458 | 3.093 | 2.141 | 1.241 |
| Figure: Benchmarking of colSums() and rowSums() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805529 43.1 1442291 77.1 1442291 77.1
Vcells 12281209 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805523 43.1 1442291 77.1 1442291 77.1
Vcells 12286252 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0146 | 0.0281 | 0.0339 | 0.0308 | 0.0448 | 0.0508 |
| 1 | colSums | 0.0173 | 0.0360 | 0.0490 | 0.0474 | 0.0653 | 0.1293 |
| 3 | apply+sum | 1.9190 | 3.4055 | 3.3434 | 3.5893 | 3.7106 | 6.7436 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 1.184 | 1.281 | 1.446 | 1.538 | 1.455 | 2.545 |
| 3 | apply+sum | 131.169 | 121.179 | 98.749 | 116.544 | 82.737 | 132.709 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0366 | 0.0527 | 0.0589 | 0.0566 | 0.0685 | 0.0847 |
| 1 | rowSums | 0.0400 | 0.0612 | 0.0744 | 0.0704 | 0.0926 | 0.1132 |
| 3 | apply+sum | 1.9479 | 3.4530 | 3.4980 | 3.6186 | 3.7290 | 14.4627 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | rowSums | 1.095 | 1.161 | 1.264 | 1.245 | 1.351 | 1.336 |
| 3 | apply+sum | 53.261 | 65.473 | 59.432 | 63.945 | 54.421 | 170.770 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+10x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 17.32 | 35.99 | 48.97 | 47.35 | 65.25 | 129.3 |
| rowSums | 40.04 | 61.21 | 74.38 | 70.45 | 92.58 | 113.2 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.0 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2.311 | 1.7 | 1.519 | 1.488 | 1.419 | 0.875 |
| Figure: Benchmarking of colSums() and rowSums() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805573 43.1 1442291 77.1 1442291 77.1
Vcells 12281605 93.8 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805567 43.1 1442291 77.1 1442291 77.1
Vcells 12331648 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.1136 | 0.1509 | 0.2103 | 0.2237 | 0.2543 | 0.2872 |
| 1 | colSums | 0.1197 | 0.1420 | 0.2144 | 0.2319 | 0.2699 | 0.3137 |
| 3 | apply+sum | 3.6255 | 4.5355 | 6.1318 | 6.3614 | 6.7223 | 22.7127 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.0000 | 1.00 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 1.054 | 0.9413 | 1.02 | 1.037 | 1.061 | 1.093 |
| 3 | apply+sum | 31.925 | 30.0561 | 29.16 | 28.442 | 26.438 | 79.089 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.3191 | 0.3274 | 0.4181 | 0.4440 | 0.4756 | 0.6598 |
| 1 | rowSums | 0.3268 | 0.3642 | 0.4337 | 0.4602 | 0.4943 | 0.5316 |
| 3 | apply+sum | 3.6113 | 4.6069 | 6.6670 | 7.0670 | 7.7509 | 20.4214 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | rowSums | 1.024 | 1.112 | 1.037 | 1.036 | 1.039 | 0.8057 |
| 3 | apply+sum | 11.316 | 14.071 | 15.947 | 15.915 | 16.297 | 30.9504 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+100x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 119.7 | 142.0 | 214.4 | 231.9 | 269.9 | 313.7 |
| rowSums | 326.8 | 364.2 | 433.7 | 460.2 | 494.3 | 531.6 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2.73 | 2.564 | 2.023 | 1.984 | 1.832 | 1.694 |
| Figure: Benchmarking of colSums() and rowSums() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805604 43.1 1442291 77.1 1442291 77.1
Vcells 12282062 93.8 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805598 43.1 1442291 77.1 1442291 77.1
Vcells 12332105 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.1051 | 0.1116 | 0.1815 | 0.1958 | 0.2373 | 0.2841 |
| 1 | colSums | 0.1109 | 0.1538 | 0.2058 | 0.2240 | 0.2635 | 0.3495 |
| 3 | apply+sum | 2.0056 | 2.6448 | 3.0788 | 3.0633 | 3.7006 | 4.4162 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.00 |
| 1 | colSums | 1.055 | 1.378 | 1.134 | 1.145 | 1.11 | 1.23 |
| 3 | apply+sum | 19.084 | 23.691 | 16.966 | 15.649 | 15.59 | 15.54 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.3241 | 0.4194 | 0.4401 | 0.4671 | 0.4829 | 0.5097 |
| 1 | rowSums | 0.3291 | 0.4700 | 0.4715 | 0.4954 | 0.5083 | 0.5801 |
| 3 | apply+sum | 2.0302 | 3.2563 | 3.6153 | 3.7498 | 3.9554 | 5.1026 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | rowSums | 1.015 | 1.121 | 1.071 | 1.061 | 1.053 | 1.138 |
| 3 | apply+sum | 6.264 | 7.764 | 8.214 | 8.027 | 8.191 | 10.011 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on integer+1000x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 110.9 | 153.8 | 205.8 | 224.0 | 263.5 | 349.5 |
| rowSums | 329.1 | 470.0 | 471.5 | 495.4 | 508.3 | 580.1 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| rowSums | 2.969 | 3.056 | 2.291 | 2.211 | 1.929 | 1.66 |
| Figure: Benchmarking of colSums() and rowSums() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805650 43.1 1442291 77.1 1442291 77.1
Vcells 12397671 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805635 43.1 1442291 77.1 1442291 77.1
Vcells 12397799 94.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0042 | 0.0054 | 0.0064 | 0.0062 | 0.0073 | 0.0169 |
| 1 | colSums | 0.0092 | 0.0112 | 0.0168 | 0.0146 | 0.0229 | 0.0416 |
| 3 | apply+sum | 0.0855 | 0.0905 | 0.1164 | 0.1161 | 0.1297 | 0.2983 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 2.181 | 2.071 | 2.626 | 2.375 | 3.131 | 2.454 |
| 3 | apply+sum | 20.175 | 16.784 | 18.194 | 18.840 | 17.735 | 17.613 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0046 | 0.0062 | 0.0072 | 0.0073 | 0.0081 | 0.0158 |
| 1 | rowSums | 0.0104 | 0.0127 | 0.0161 | 0.0141 | 0.0162 | 0.1736 |
| 3 | apply+sum | 0.0870 | 0.0985 | 0.1071 | 0.1011 | 0.1032 | 0.5301 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 | 1.00 |
| 1 | rowSums | 2.25 | 2.062 | 2.236 | 1.921 | 2.00 | 11.00 |
| 3 | apply+sum | 18.83 | 15.998 | 14.859 | 13.814 | 12.76 | 33.58 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowSums | 10.39 | 12.70 | 16.12 | 14.05 | 16.17 | 173.62 |
| 1 | colSums | 9.24 | 11.16 | 16.80 | 14.63 | 22.91 | 41.58 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowSums | 1.000 | 1.0000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | colSums | 0.889 | 0.8788 | 1.042 | 1.041 | 1.417 | 0.2395 |
| Figure: Benchmarking of colSums() and rowSums() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805675 43.1 1442291 77.1 1442291 77.1
Vcells 12398411 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805669 43.1 1442291 77.1 1442291 77.1
Vcells 12408454 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0108 | 0.0129 | 0.0179 | 0.0160 | 0.0189 | 0.1251 |
| 1 | colSums | 0.0146 | 0.0206 | 0.0271 | 0.0246 | 0.0318 | 0.0597 |
| 3 | apply+sum | 0.3934 | 0.4706 | 0.6029 | 0.6608 | 0.7074 | 1.2523 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | colSums | 1.357 | 1.597 | 1.511 | 1.542 | 1.684 | 0.4769 |
| 3 | apply+sum | 36.499 | 36.488 | 33.598 | 41.359 | 37.499 | 10.0092 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0262 | 0.0273 | 0.0314 | 0.0293 | 0.0341 | 0.0758 |
| 1 | rowSums | 0.0293 | 0.0316 | 0.0398 | 0.0354 | 0.0448 | 0.0758 |
| 3 | apply+sum | 0.3896 | 0.4154 | 0.5039 | 0.4825 | 0.5243 | 0.7976 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.00 |
| 1 | rowSums | 1.118 | 1.155 | 1.265 | 1.21 | 1.316 | 1.00 |
| 3 | apply+sum | 14.882 | 15.197 | 16.030 | 16.49 | 15.390 | 10.52 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 14.63 | 20.60 | 27.11 | 24.64 | 31.76 | 59.67 |
| rowSums | 29.26 | 31.57 | 39.77 | 35.42 | 44.85 | 75.84 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2 | 1.533 | 1.467 | 1.438 | 1.412 | 1.271 |
| Figure: Benchmarking of colSums() and rowSums() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805715 43.1 1442291 77.1 1442291 77.1
Vcells 12399215 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805709 43.1 1442291 77.1 1442291 77.1
Vcells 12409258 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0123 | 0.0169 | 0.0186 | 0.0181 | 0.0200 | 0.0262 |
| 1 | colSums | 0.0154 | 0.0239 | 0.0274 | 0.0250 | 0.0296 | 0.1032 |
| 3 | apply+sum | 0.2314 | 0.3178 | 0.3969 | 0.4188 | 0.4675 | 0.5832 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.00 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 1.25 | 1.409 | 1.47 | 1.383 | 1.481 | 3.941 |
| 3 | apply+sum | 18.78 | 18.760 | 21.28 | 23.148 | 23.354 | 22.279 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0373 | 0.0393 | 0.0451 | 0.0412 | 0.0427 | 0.2776 |
| 1 | rowSums | 0.0443 | 0.0483 | 0.0571 | 0.0572 | 0.0616 | 0.0947 |
| 3 | apply+sum | 0.3838 | 0.4054 | 0.4440 | 0.4329 | 0.4602 | 1.2080 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | rowSums | 1.186 | 1.23 | 1.265 | 1.388 | 1.441 | 0.3412 |
| 3 | apply+sum | 10.278 | 10.32 | 9.840 | 10.509 | 10.770 | 4.3523 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x10 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 15.40 | 23.87 | 27.41 | 25.02 | 29.64 | 103.2 |
| rowSums | 44.27 | 48.31 | 57.09 | 57.17 | 61.59 | 94.7 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| rowSums | 2.875 | 2.024 | 2.083 | 2.285 | 2.078 | 0.9179 |
| Figure: Benchmarking of colSums() and rowSums() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805745 43.1 1442291 77.1 1442291 77.1
Vcells 12399233 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805739 43.1 1442291 77.1 1442291 77.1
Vcells 12409276 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0119 | 0.0139 | 0.0262 | 0.0210 | 0.037 | 0.0493 |
| 1 | colSums | 0.0158 | 0.0185 | 0.0380 | 0.0366 | 0.052 | 0.0951 |
| 3 | apply+sum | 1.9937 | 2.1394 | 3.0565 | 3.4386 | 3.681 | 7.2175 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | colSums | 1.323 | 1.333 | 1.453 | 1.743 | 1.406 | 1.93 |
| 3 | apply+sum | 167.059 | 154.368 | 116.861 | 163.891 | 99.595 | 146.47 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.0277 | 0.0352 | 0.0428 | 0.0406 | 0.0500 | 0.0627 |
| 1 | rowSums | 0.0320 | 0.0481 | 0.0601 | 0.0595 | 0.0699 | 0.0959 |
| 3 | apply+sum | 2.0114 | 2.1149 | 3.0317 | 3.3112 | 3.7622 | 7.5085 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | rowSums | 1.153 | 1.366 | 1.403 | 1.464 | 1.396 | 1.528 |
| 3 | apply+sum | 72.566 | 60.042 | 70.808 | 81.529 | 75.175 | 119.660 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+10x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 15.78 | 18.48 | 38.00 | 36.57 | 51.97 | 95.08 |
| rowSums | 31.95 | 48.12 | 60.07 | 59.48 | 69.87 | 95.85 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2.024 | 2.604 | 1.581 | 1.626 | 1.344 | 1.008 |
| Figure: Benchmarking of colSums() and rowSums() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805789 43.1 1442291 77.1 1442291 77.1
Vcells 12400190 94.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805783 43.1 1442291 77.1 1442291 77.1
Vcells 12500233 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.0893 | 0.1178 | 0.1510 | 0.1272 | 0.1996 | 0.2521 |
| 1 | colSums | 0.0962 | 0.1263 | 0.1671 | 0.1453 | 0.2239 | 0.3626 |
| 3 | apply+sum | 3.6232 | 6.0942 | 6.2943 | 6.3165 | 6.7892 | 25.6360 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 1.078 | 1.072 | 1.107 | 1.142 | 1.121 | 1.438 |
| 3 | apply+sum | 40.569 | 51.735 | 41.697 | 49.647 | 34.014 | 101.671 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.2387 | 0.2812 | 0.3175 | 0.3282 | 0.3515 | 0.5663 |
| 1 | rowSums | 0.2460 | 0.3118 | 0.3485 | 0.3574 | 0.3848 | 0.5001 |
| 3 | apply+sum | 3.7791 | 6.3063 | 6.9822 | 6.9763 | 7.4048 | 28.5705 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | rowSums | 1.031 | 1.109 | 1.098 | 1.089 | 1.095 | 0.8831 |
| 3 | apply+sum | 15.834 | 22.426 | 21.994 | 21.258 | 21.068 | 50.4540 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+100x1000 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 96.24 | 126.3 | 167.1 | 145.3 | 223.9 | 362.6 |
| rowSums | 245.99 | 311.8 | 348.5 | 357.4 | 384.8 | 500.1 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.00 | 1.000 | 1.00 | 1.000 | 1.000 |
| rowSums | 2.556 | 2.47 | 2.086 | 2.46 | 1.719 | 1.379 |
| Figure: Benchmarking of colSums() and rowSums() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805820 43.1 1442291 77.1 1442291 77.1
Vcells 12400209 94.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colSums = colSums(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L, FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805814 43.1 1442291 77.1 1442291 77.1
Vcells 12500252 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowSums = rowSums(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L, FUN = sum, na.rm = FALSE), unit = "ms")Table: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 0.1012 | 0.1080 | 0.1463 | 0.1193 | 0.1944 | 0.3199 |
| 1 | colSums | 0.1078 | 0.1272 | 0.1731 | 0.1517 | 0.2331 | 0.3218 |
| 3 | apply+sum | 2.0183 | 2.8562 | 3.4913 | 3.4213 | 3.7648 | 13.8918 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colSums | 1.065 | 1.178 | 1.183 | 1.271 | 1.199 | 1.006 |
| 3 | apply+sum | 19.935 | 26.451 | 23.861 | 28.669 | 19.366 | 43.426 |
| Table: Benchmarking of rowSums(), .rowSums() and apply+sum() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 0.2437 | 0.2510 | 0.3148 | 0.3199 | 0.3549 | 0.4030 |
| 1 | rowSums | 0.2498 | 0.3049 | 0.3506 | 0.3493 | 0.3923 | 0.8454 |
| 3 | apply+sum | 2.1534 | 3.4057 | 4.2447 | 4.0776 | 4.9155 | 14.3457 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | .rowSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | rowSums | 1.025 | 1.215 | 1.114 | 1.092 | 1.105 | 2.097 |
| 3 | apply+sum | 8.837 | 13.569 | 13.484 | 12.747 | 13.849 | 35.593 |
| Figure: Benchmarking of colSums(), .colSums() and apply+sum() on double+1000x100 data as well as rowSums(), .rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colSums() and rowSums() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 107.8 | 127.2 | 173.1 | 151.7 | 233.1 | 321.8 |
| rowSums | 249.8 | 304.9 | 350.6 | 349.3 | 392.3 | 845.4 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colSums | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowSums | 2.318 | 2.396 | 2.025 | 2.303 | 1.683 | 2.627 |
| Figure: Benchmarking of colSums() and rowSums() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 BiocGenerics_0.13.6 splines_3.2.0
[4] MASS_7.3-39 munsell_0.4.2 lattice_0.20-30
[7] colorspace_1.2-4 R.cache_0.11.1-9000 multcomp_1.3-9
[10] stringr_0.6.2 plyr_1.8.1 tools_3.2.0
[13] parallel_3.2.0 grid_3.2.0 Biobase_2.27.2
[16] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[19] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[22] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[25] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[28] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[31] Cairo_1.5-6 proto_0.3-10 Total processing time was 40.78 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colSums')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:22:15 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)