-
Notifications
You must be signed in to change notification settings - Fork 0
colRowAlls
matrixStats: Benchmark report
This report benchmark the performance of colAlls() and rowAlls() against alternative methods.
- apply() + all()
- colSums() == n or rowSums() == n
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "logical")> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647388 34.6 1168576 62.5 1168576 62.5
Vcells 12122077 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 646344 34.6 1168576 62.5 1168576 62.5
Vcells 12119264 92.5 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0035 | 0.0050 | 0.0087 | 0.0062 | 0.0081 | 0.2314 |
| 3 | colSums==n | 0.0065 | 0.0104 | 0.0139 | 0.0127 | 0.0152 | 0.1070 |
| 2 | apply+all | 0.0547 | 0.0585 | 0.0743 | 0.0806 | 0.0866 | 0.1609 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 3 | colSums==n | 1.889 | 2.076 | 1.611 | 2.062 | 1.881 | 0.4626 |
| 2 | apply+all | 15.776 | 11.689 | 8.583 | 13.092 | 10.713 | 0.6955 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.0035 | 0.0054 | 0.0093 | 0.0065 | 0.0089 | 0.2009 |
| 3 | rowSums==n | 0.0069 | 0.0117 | 0.0150 | 0.0133 | 0.0167 | 0.1070 |
| 2 | apply+all | 0.0539 | 0.0810 | 0.0840 | 0.0839 | 0.0885 | 0.1717 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 3 | rowSums==n | 1.999 | 2.178 | 1.615 | 2.029 | 1.891 | 0.5326 |
| 2 | apply+all | 15.549 | 15.033 | 9.047 | 12.822 | 9.999 | 0.8544 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 10x10 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 3.465 | 5.006 | 8.655 | 6.160 | 8.085 | 231.4 |
| rowAlls | 3.466 | 5.391 | 9.286 | 6.545 | 8.855 | 200.9 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| rowAlls | 1 | 1.077 | 1.073 | 1.062 | 1.095 | 0.8686 |
| Figure: Benchmarking of colAlls() and rowAlls() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647218 34.6 1168576 62.5 1168576 62.5
Vcells 12121895 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647212 34.6 1168576 62.5 1168576 62.5
Vcells 12126938 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0042 | 0.0054 | 0.0094 | 0.0089 | 0.0108 | 0.0296 |
| 3 | colSums==n | 0.0189 | 0.0216 | 0.0284 | 0.0258 | 0.0345 | 0.1070 |
| 2 | apply+all | 0.3622 | 0.3761 | 0.4381 | 0.4358 | 0.4500 | 0.6356 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | colSums==n | 4.454 | 3.999 | 3.039 | 2.913 | 3.196 | 3.61 |
| 2 | apply+all | 85.535 | 69.765 | 46.807 | 49.212 | 41.745 | 21.44 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.0158 | 0.0173 | 0.0229 | 0.0208 | 0.0260 | 0.0531 |
| 3 | rowSums==n | 0.0397 | 0.0423 | 0.0509 | 0.0477 | 0.0591 | 0.0820 |
| 2 | apply+all | 0.3622 | 0.3753 | 0.4551 | 0.4300 | 0.5124 | 0.6560 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums==n | 2.512 | 2.444 | 2.22 | 2.296 | 2.274 | 1.544 |
| 2 | apply+all | 22.950 | 21.665 | 19.85 | 20.684 | 19.718 | 12.348 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 100x100 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 4.235 | 5.391 | 9.359 | 8.855 | 10.78 | 29.64 |
| rowAlls | 15.784 | 17.324 | 22.925 | 20.789 | 25.98 | 53.12 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| rowAlls | 3.727 | 3.213 | 2.449 | 2.348 | 2.41 | 1.792 |
| Figure: Benchmarking of colAlls() and rowAlls() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647258 34.6 1168576 62.5 1168576 62.5
Vcells 12122130 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647252 34.6 1168576 62.5 1168576 62.5
Vcells 12127173 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0027 | 0.0054 | 0.0092 | 0.0073 | 0.010 | 0.0604 |
| 3 | colSums==n | 0.0169 | 0.0231 | 0.0310 | 0.0331 | 0.037 | 0.0550 |
| 2 | apply+all | 0.2213 | 0.2916 | 0.3240 | 0.3311 | 0.378 | 0.6167 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 3 | colSums==n | 6.283 | 4.285 | 3.387 | 4.525 | 3.692 | 0.9108 |
| 2 | apply+all | 82.103 | 54.091 | 35.377 | 45.252 | 37.765 | 10.2036 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.0189 | 0.0235 | 0.0319 | 0.0325 | 0.0364 | 0.0597 |
| 3 | rowSums==n | 0.0400 | 0.0462 | 0.0615 | 0.0647 | 0.0706 | 0.1413 |
| 2 | apply+all | 0.2283 | 0.2991 | 0.3797 | 0.3886 | 0.4300 | 0.9570 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums==n | 2.123 | 1.967 | 1.929 | 1.988 | 1.942 | 2.368 |
| 2 | apply+all | 12.102 | 12.737 | 11.916 | 11.947 | 11.820 | 16.038 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 1000x10 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 2.696 | 5.391 | 9.159 | 7.316 | 10.01 | 60.44 |
| rowAlls | 18.863 | 23.483 | 31.867 | 32.529 | 36.38 | 59.67 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| rowAlls | 6.997 | 4.356 | 3.479 | 4.446 | 3.634 | 0.9873 |
| Figure: Benchmarking of colAlls() and rowAlls() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647288 34.6 1168576 62.5 1168576 62.5
Vcells 12122697 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647282 34.6 1168576 62.5 1168576 62.5
Vcells 12127740 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0162 | 0.0192 | 0.0333 | 0.0362 | 0.0458 | 0.0570 |
| 3 | colSums==n | 0.0281 | 0.0312 | 0.0555 | 0.0577 | 0.0681 | 0.1132 |
| 2 | apply+all | 1.8347 | 2.0046 | 2.6249 | 2.2674 | 3.2392 | 6.4387 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | colSums==n | 1.738 | 1.62 | 1.668 | 1.596 | 1.487 | 1.986 |
| 2 | apply+all | 113.470 | 104.14 | 78.909 | 62.658 | 70.708 | 113.012 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.0335 | 0.0366 | 0.0527 | 0.0500 | 0.0643 | 0.1005 |
| 3 | rowSums==n | 0.0474 | 0.0749 | 0.0838 | 0.0805 | 0.1080 | 0.1636 |
| 2 | apply+all | 1.9367 | 2.0818 | 2.8903 | 3.0681 | 3.4016 | 6.8553 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowSums==n | 1.414 | 2.047 | 1.591 | 1.608 | 1.68 | 1.628 |
| 2 | apply+all | 57.826 | 56.926 | 54.883 | 61.306 | 52.91 | 68.229 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 10x1000 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 16.17 | 19.25 | 33.26 | 36.19 | 45.81 | 56.97 |
| rowAlls | 33.49 | 36.57 | 52.66 | 50.05 | 64.29 | 100.47 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1.000 | 1.0 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowAlls | 2.071 | 1.9 | 1.583 | 1.383 | 1.403 | 1.764 |
| Figure: Benchmarking of colAlls() and rowAlls() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647332 34.6 1168576 62.5 1168576 62.5
Vcells 12123092 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647326 34.6 1168576 62.5 1168576 62.5
Vcells 12173135 92.9 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0185 | 0.0223 | 0.0456 | 0.0312 | 0.0678 | 0.1166 |
| 3 | colSums==n | 0.1290 | 0.1544 | 0.1951 | 0.1898 | 0.2254 | 0.2810 |
| 2 | apply+all | 3.3795 | 3.5262 | 4.6763 | 4.1238 | 5.2897 | 16.5361 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | colSums==n | 6.979 | 6.913 | 4.282 | 6.086 | 3.327 | 2.409 |
| 2 | apply+all | 182.884 | 157.923 | 102.632 | 132.250 | 78.073 | 141.768 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.1240 | 0.1434 | 0.1636 | 0.1546 | 0.1848 | 0.2625 |
| 3 | rowSums==n | 0.3353 | 0.3403 | 0.4177 | 0.3830 | 0.4925 | 0.6048 |
| 2 | apply+all | 3.4896 | 3.9577 | 5.3721 | 5.1284 | 6.0241 | 14.8438 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums==n | 2.705 | 2.373 | 2.554 | 2.478 | 2.666 | 2.304 |
| 2 | apply+all | 28.152 | 27.600 | 32.844 | 33.181 | 32.602 | 56.539 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 100x1000 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 18.48 | 22.33 | 45.56 | 31.18 | 67.75 | 116.6 |
| rowAlls | 123.96 | 143.40 | 163.56 | 154.56 | 184.78 | 262.5 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| rowAlls | 6.708 | 6.422 | 3.59 | 4.957 | 2.727 | 2.251 |
| Figure: Benchmarking of colAlls() and rowAlls() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647363 34.6 1168576 62.5 1168576 62.5
Vcells 12123548 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAlls = colAlls(X), `apply+all` = apply(X, MARGIN = 2L, FUN = all),
+ `colSums==n` = (colSums(X) == nrow(X)), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 647357 34.6 1168576 62.5 1168576 62.5
Vcells 12173591 92.9 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAlls = rowAlls(X), `apply+all` = apply(X, MARGIN = 1L, FUN = all),
+ `rowSums==n` = (rowSums(X) == ncol(X)), unit = "ms")Table: Benchmarking of colAlls(), apply+all() and colSums==n() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 0.0050 | 0.0096 | 0.0251 | 0.0308 | 0.0379 | 0.0701 |
| 3 | colSums==n | 0.1143 | 0.1705 | 0.2268 | 0.2115 | 0.2458 | 0.7849 |
| 2 | apply+all | 1.9548 | 2.8966 | 3.3878 | 3.4569 | 3.6802 | 8.5598 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAlls | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.0 |
| 3 | colSums==n | 22.84 | 17.72 | 9.043 | 6.869 | 6.482 | 11.2 |
| 2 | apply+all | 390.49 | 300.94 | 135.078 | 112.248 | 97.053 | 122.2 |
| Table: Benchmarking of rowAlls(), apply+all() and rowSums==n() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 0.1139 | 0.1332 | 0.1538 | 0.1584 | 0.1748 | 0.2240 |
| 3 | rowSums==n | 0.3345 | 0.3642 | 0.4209 | 0.3801 | 0.4900 | 0.7903 |
| 2 | apply+all | 1.9275 | 2.1744 | 2.9963 | 2.9761 | 3.5169 | 5.9514 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAlls | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 |
| 3 | rowSums==n | 2.936 | 2.734 | 2.736 | 2.40 | 2.804 | 3.527 |
| 2 | apply+all | 16.916 | 16.325 | 19.477 | 18.79 | 20.123 | 26.564 |
| Figure: Benchmarking of colAlls(), apply+all() and colSums==n() on 1000x100 data as well as rowAlls(), apply+all() and rowSums==n() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAlls() and rowAlls() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 5.006 | 9.625 | 25.08 | 30.8 | 37.92 | 70.06 |
| rowAlls | 113.947 | 133.195 | 153.84 | 158.4 | 174.77 | 224.04 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAlls | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowAlls | 22.76 | 13.84 | 6.134 | 5.144 | 4.609 | 3.198 |
| Figure: Benchmarking of colAlls() and rowAlls() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 splines_3.2.0 MASS_7.3-39
[4] munsell_0.4.2 lattice_0.20-30 colorspace_1.2-4
[7] R.cache_0.11.1-9000 multcomp_1.3-9 stringr_0.6.2
[10] plyr_1.8.1 tools_3.2.0 grid_3.2.0
[13] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[16] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[19] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[22] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[25] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[28] Cairo_1.5-6 proto_0.3-10 Total processing time was 18.55 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colAlls')Copyright Henrik Bengtsson. Last updated on 2015-03-02 16:57:01 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)