-
Notifications
You must be signed in to change notification settings - Fork 0
colRowAnys
matrixStats: Benchmark report
This report benchmark the performance of colAnys() and rowAnys() against alternative methods.
- apply() + any()
- colSums() > 0 or rowSums() > 0
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "logical")> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 649471 34.7 1168576 62.5 1168576 62.5
Vcells 12125146 92.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648130 34.7 1168576 62.5 1168576 62.5
Vcells 12121512 92.5 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0023 | 0.0035 | 0.0047 | 0.0050 | 0.0058 | 0.0192 |
| 3 | colSums > 0 | 0.0058 | 0.0073 | 0.0088 | 0.0089 | 0.0100 | 0.0381 |
| 2 | apply+any | 0.0481 | 0.0520 | 0.0550 | 0.0533 | 0.0550 | 0.1190 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | colSums > 0 | 2.499 | 2.111 | 1.853 | 1.769 | 1.733 | 1.98 |
| 2 | apply+any | 20.823 | 14.994 | 11.594 | 10.653 | 9.532 | 6.18 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.0027 | 0.0037 | 0.0049 | 0.0052 | 0.0058 | 0.0192 |
| 3 | rowSums > 0 | 0.0058 | 0.0069 | 0.0088 | 0.0085 | 0.0100 | 0.0381 |
| 2 | apply+any | 0.0481 | 0.0520 | 0.0541 | 0.0535 | 0.0547 | 0.1193 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.00 |
| 3 | rowSums > 0 | 2.143 | 1.895 | 1.81 | 1.629 | 1.733 | 1.98 |
| 2 | apply+any | 17.856 | 14.207 | 11.08 | 10.294 | 9.466 | 6.20 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 10x10 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 2.311 | 3.466 | 4.744 | 5.005 | 5.775 | 19.25 |
| rowAnys | 2.695 | 3.658 | 4.886 | 5.198 | 5.775 | 19.25 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1.000 | 1.000 | 1.00 | 1.000 | 1 | 1 |
| rowAnys | 1.166 | 1.055 | 1.03 | 1.039 | 1 | 1 |
| Figure: Benchmarking of colAnys() and rowAnys() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648192 34.7 1168576 62.5 1168576 62.5
Vcells 12122694 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648186 34.7 1168576 62.5 1168576 62.5
Vcells 12127737 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0065 | 0.0092 | 0.0127 | 0.0123 | 0.0150 | 0.0293 |
| 3 | colSums > 0 | 0.0192 | 0.0358 | 0.0397 | 0.0397 | 0.0429 | 0.1174 |
| 2 | apply+any | 0.4273 | 0.6562 | 0.6697 | 0.6929 | 0.7195 | 0.8284 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | colSums > 0 | 2.941 | 3.875 | 3.117 | 3.219 | 2.859 | 4.013 |
| 2 | apply+any | 65.287 | 71.012 | 52.622 | 56.246 | 47.919 | 28.315 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.0150 | 0.0169 | 0.0191 | 0.0189 | 0.0200 | 0.0354 |
| 3 | rowSums > 0 | 0.0385 | 0.0404 | 0.0439 | 0.0418 | 0.0450 | 0.0670 |
| 2 | apply+any | 0.3538 | 0.3657 | 0.4183 | 0.3717 | 0.4333 | 0.7245 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 |
| 3 | rowSums > 0 | 2.564 | 2.386 | 2.293 | 2.214 | 2.25 | 1.891 |
| 2 | apply+any | 23.563 | 21.590 | 21.870 | 19.704 | 21.64 | 20.456 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 100x100 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 6.545 | 9.24 | 12.73 | 12.32 | 15.01 | 29.26 |
| rowAnys | 15.014 | 16.94 | 19.13 | 18.86 | 20.02 | 35.42 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| rowAnys | 2.294 | 1.833 | 1.503 | 1.531 | 1.333 | 1.21 |
| Figure: Benchmarking of colAnys() and rowAnys() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648232 34.7 1168576 62.5 1168576 62.5
Vcells 12122935 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648226 34.7 1168576 62.5 1168576 62.5
Vcells 12127978 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0023 | 0.0039 | 0.0059 | 0.0062 | 0.0069 | 0.0558 |
| 3 | colSums > 0 | 0.0162 | 0.0181 | 0.0202 | 0.0212 | 0.0219 | 0.0362 |
| 2 | apply+any | 0.2202 | 0.2229 | 0.2408 | 0.2256 | 0.2371 | 0.3472 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 3 | colSums > 0 | 6.997 | 4.699 | 3.414 | 3.437 | 3.166 | 0.6483 |
| 2 | apply+any | 95.281 | 57.886 | 40.711 | 36.621 | 34.218 | 6.2205 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.0200 | 0.0208 | 0.0229 | 0.0229 | 0.0237 | 0.0466 |
| 3 | rowSums > 0 | 0.0385 | 0.0406 | 0.0428 | 0.0433 | 0.0447 | 0.0554 |
| 2 | apply+any | 0.2194 | 0.2227 | 0.2426 | 0.2260 | 0.2379 | 0.3757 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums > 0 | 1.923 | 1.954 | 1.871 | 1.891 | 1.886 | 1.190 |
| 2 | apply+any | 10.961 | 10.712 | 10.603 | 9.865 | 10.048 | 8.066 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 1000x10 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 2.311 | 3.85 | 5.914 | 6.16 | 6.93 | 55.82 |
| rowAnys | 20.018 | 20.79 | 22.879 | 22.91 | 23.68 | 46.58 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| rowAnys | 8.662 | 5.399 | 3.869 | 3.719 | 3.417 | 0.8345 |
| Figure: Benchmarking of colAnys() and rowAnys() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648262 34.7 1168576 62.5 1168576 62.5
Vcells 12123503 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648256 34.7 1168576 62.5 1168576 62.5
Vcells 12128546 92.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0154 | 0.0179 | 0.0268 | 0.0252 | 0.0329 | 0.0543 |
| 3 | colSums > 0 | 0.0266 | 0.0300 | 0.0428 | 0.0381 | 0.0524 | 0.1012 |
| 2 | apply+any | 1.6950 | 1.7841 | 2.3478 | 1.8484 | 2.6893 | 6.7325 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | colSums > 0 | 1.725 | 1.677 | 1.599 | 1.511 | 1.591 | 1.865 |
| 2 | apply+any | 110.069 | 99.663 | 87.677 | 73.302 | 81.705 | 124.034 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.0339 | 0.0358 | 0.0430 | 0.0393 | 0.0491 | 0.0731 |
| 3 | rowSums > 0 | 0.0474 | 0.0493 | 0.0601 | 0.0549 | 0.0654 | 0.1382 |
| 2 | apply+any | 1.6965 | 1.7806 | 2.2477 | 1.8491 | 2.1284 | 4.5579 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums > 0 | 1.398 | 1.376 | 1.398 | 1.397 | 1.333 | 1.889 |
| 2 | apply+any | 50.078 | 49.736 | 52.324 | 47.092 | 43.364 | 62.314 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 10x1000 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 15.40 | 17.9 | 26.78 | 25.22 | 32.91 | 54.28 |
| rowAnys | 33.88 | 35.8 | 42.96 | 39.27 | 49.08 | 73.14 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1.0 | 1 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowAnys | 2.2 | 2 | 1.604 | 1.557 | 1.491 | 1.347 |
| Figure: Benchmarking of colAnys() and rowAnys() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648306 34.7 1168576 62.5 1168576 62.5
Vcells 12123901 92.5 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648300 34.7 1168576 62.5 1168576 62.5
Vcells 12173944 92.9 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0177 | 0.0223 | 0.0472 | 0.0395 | 0.0679 | 0.127 |
| 3 | colSums > 0 | 0.1290 | 0.1320 | 0.1983 | 0.1825 | 0.2520 | 0.390 |
| 2 | apply+any | 3.3456 | 3.6267 | 5.0826 | 4.0397 | 6.0815 | 22.921 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 3 | colSums > 0 | 7.282 | 5.914 | 4.203 | 4.624 | 3.708 | 3.07 |
| 2 | apply+any | 188.923 | 162.426 | 107.736 | 102.379 | 89.506 | 180.43 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.1240 | 0.1293 | 0.1549 | 0.1519 | 0.1728 | 0.2221 |
| 3 | rowSums > 0 | 0.3345 | 0.3703 | 0.4350 | 0.4177 | 0.5139 | 0.6232 |
| 2 | apply+any | 3.3861 | 4.3966 | 5.8292 | 5.3917 | 6.6093 | 22.0532 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 |
| 3 | rowSums > 0 | 2.699 | 2.863 | 2.809 | 2.75 | 2.973 | 2.806 |
| 2 | apply+any | 27.317 | 33.991 | 37.639 | 35.50 | 38.238 | 99.286 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 100x1000 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 17.71 | 22.33 | 47.18 | 39.46 | 67.94 | 127.0 |
| rowAnys | 123.96 | 129.34 | 154.87 | 151.87 | 172.84 | 222.1 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowAnys | 7 | 5.793 | 3.283 | 3.849 | 2.544 | 1.748 |
| Figure: Benchmarking of colAnys() and rowAnys() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648337 34.7 1168576 62.5 1168576 62.5
Vcells 12124353 92.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colAnys = colAnys(X), `apply+any` = apply(X, MARGIN = 2L, FUN = any),
+ `colSums > 0` = (colSums(X) > 0L), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 648331 34.7 1168576 62.5 1168576 62.5
Vcells 12174396 92.9 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowAnys = rowAnys(X), `apply+any` = apply(X, MARGIN = 1L, FUN = any),
+ `rowSums > 0` = (rowSums(X) > 0L), unit = "ms")Table: Benchmarking of colAnys(), apply+any() and colSums > 0() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 0.0050 | 0.0083 | 0.0208 | 0.0204 | 0.0320 | 0.0589 |
| 3 | colSums > 0 | 0.1136 | 0.1164 | 0.1682 | 0.1621 | 0.2179 | 0.2768 |
| 2 | apply+any | 1.8809 | 1.9681 | 2.5582 | 2.6518 | 2.8833 | 3.8815 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | colSums > 0 | 22.69 | 14.07 | 8.079 | 7.943 | 6.819 | 4.699 |
| 2 | apply+any | 375.80 | 237.76 | 122.897 | 129.963 | 90.239 | 65.901 |
| Table: Benchmarking of rowAnys(), apply+any() and rowSums > 0() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 0.1163 | 0.1201 | 0.1380 | 0.1334 | 0.1386 | 0.5054 |
| 3 | rowSums > 0 | 0.3361 | 0.3397 | 0.3917 | 0.3644 | 0.4619 | 0.6113 |
| 2 | apply+any | 1.9367 | 2.3575 | 2.8386 | 2.7830 | 3.0758 | 4.3946 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 3 | rowSums > 0 | 2.891 | 2.829 | 2.839 | 2.732 | 3.333 | 1.209 |
| 2 | apply+any | 16.659 | 19.628 | 20.576 | 20.864 | 22.194 | 8.695 |
| Figure: Benchmarking of colAnys(), apply+any() and colSums > 0() on 1000x100 data as well as rowAnys(), apply+any() and rowSums > 0() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys() and rowAnys() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 5.005 | 8.277 | 20.82 | 20.4 | 31.95 | 58.9 |
| rowAnys | 116.258 | 120.106 | 137.96 | 133.4 | 138.58 | 505.4 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colAnys | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| rowAnys | 23.23 | 14.51 | 6.628 | 6.537 | 4.337 | 8.582 |
| Figure: Benchmarking of colAnys() and rowAnys() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 splines_3.2.0 MASS_7.3-39
[4] munsell_0.4.2 lattice_0.20-30 colorspace_1.2-4
[7] R.cache_0.11.1-9000 multcomp_1.3-9 stringr_0.6.2
[10] plyr_1.8.1 tools_3.2.0 grid_3.2.0
[13] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[16] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[19] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[22] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[25] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[28] Cairo_1.5-6 proto_0.3-10 Total processing time was 17.31 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colAnys')Copyright Henrik Bengtsson. Last updated on 2015-03-02 16:58:09 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)