-
Notifications
You must be signed in to change notification settings - Fork 0
logSumExp
matrixStats: Benchmark report
This report benchmark the performance of logSumExp() against alternative methods.
- logSumExp_R()
where
> logSumExp_R <- function(lx, ...) {
+ iMax <- which.max(lx)
+ log1p(sum(exp(lx[-iMax] - lx[iMax]))) + lx[iMax]
+ }> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (naProb > 0)
+ x[sample(n, size = naProb * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]> x <- data[["n=1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1754114 93.7 2637877 140.9 2637877 140.9
Vcells 13889754 106.0 42812957 326.7 68120027 519.8
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")Table: Benchmarking of logSumExp() and logSumExp_R() on n=1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 0.0489 | 0.0497 | 0.0551 | 0.0504 | 0.0560 | 0.0974 |
| logSumExp_R | 0.0693 | 0.0708 | 0.0784 | 0.0716 | 0.0791 | 0.1574 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 |
| logSumExp_R | 1.417 | 1.426 | 1.423 | 1.42 | 1.412 | 1.617 |
| Figure: Benchmarking of logSumExp() and logSumExp_R() on n=1000 data. Outliers are displayed as crosses. Times are in milliseconds. | ||||||
![]() |
> x <- data[["n=10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1754134 93.7 2637877 140.9 2637877 140.9
Vcells 13890025 106.0 42812957 326.7 68120027 519.8
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")Table: Benchmarking of logSumExp() and logSumExp_R() on n=10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 0.4785 | 0.4793 | 0.5161 | 0.4816 | 0.4885 | 0.7934 |
| logSumExp_R | 0.6560 | 0.6610 | 0.7260 | 0.6648 | 0.7997 | 1.0228 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| logSumExp_R | 1.371 | 1.379 | 1.407 | 1.381 | 1.637 | 1.289 |
| Figure: Benchmarking of logSumExp() and logSumExp_R() on n=10000 data. Outliers are displayed as crosses. Times are in milliseconds. | ||||||
![]() |
> x <- data[["n=100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1754146 93.7 2637877 140.9 2637877 140.9
Vcells 13890033 106.0 42812957 326.7 68120027 519.8
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")Table: Benchmarking of logSumExp() and logSumExp_R() on n=100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 4.785 | 5.428 | 6.241 | 6.292 | 6.859 | 9.988 |
| logSumExp_R | 6.639 | 7.613 | 8.485 | 8.536 | 9.023 | 13.641 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| logSumExp_R | 1.387 | 1.403 | 1.36 | 1.357 | 1.315 | 1.366 |
| Figure: Benchmarking of logSumExp() and logSumExp_R() on n=100000 data. Outliers are displayed as crosses. Times are in milliseconds. | ||||||
![]() |
> x <- data[["n=1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1754158 93.7 2637877 140.9 2637877 140.9
Vcells 13890553 106.0 42812957 326.7 68120027 519.8
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")Table: Benchmarking of logSumExp() and logSumExp_R() on n=1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 44.88 | 48.65 | 53.91 | 52.14 | 58.00 | 81.04 |
| logSumExp_R | 65.27 | 72.58 | 81.72 | 76.92 | 84.36 | 328.78 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| logSumExp | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| logSumExp_R | 1.454 | 1.492 | 1.516 | 1.475 | 1.454 | 4.057 |
| Figure: Benchmarking of logSumExp() and logSumExp_R() on n=1000000 data. Outliers are displayed as crosses. Times are in milliseconds. | ||||||
![]() |
R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 GenomeInfoDb_1.3.13 formatR_1.0.3
[4] plyr_1.8.1 base64enc_0.1-3 tools_3.2.0
[7] digest_0.6.8 RSQLite_1.0.0 annotate_1.45.2
[10] evaluate_0.5.7 gtable_0.1.2 R.cache_0.11.1-9000
[13] lattice_0.20-30 DBI_0.3.1 parallel_3.2.0
[16] mvtnorm_1.0-2 proto_0.3-10 R.rsp_0.20.0
[19] genefilter_1.49.2 stringr_0.6.2 IRanges_2.1.41
[22] S4Vectors_0.5.21 stats4_3.2.0 grid_3.2.0
[25] Biobase_2.27.2 AnnotationDbi_1.29.17 XML_3.98-1.1
[28] survival_2.38-1 multcomp_1.3-9 TH.data_1.0-6
[31] reshape2_1.4.1 scales_0.2.4 MASS_7.3-39
[34] splines_3.2.0 BiocGenerics_0.13.6 xtable_1.8-0
[37] mime_0.2.1 colorspace_1.2-4 labeling_0.3
[40] sandwich_2.3-2 munsell_0.4.2 Cairo_1.5-6
[43] zoo_1.7-12 Total processing time was 21.52 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('logSumExp')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:28:10 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)



