-
Notifications
You must be signed in to change notification settings - Fork 0
colRowCounts_subset
matrixStats: Benchmark report
This report benchmark the performance of colCounts() and rowCounts() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.005384 | 0.0057790 | 0.0076935 | 0.0059465 | 0.0061550 | 0.170428 | 100 |
| colCounts(X,rows,cols) | 0.005801 | 0.0061375 | 0.0064140 | 0.0063020 | 0.0064855 | 0.008404 | 100 |
| colCounts(X[rows,cols]) | 0.007176 | 0.0074875 | 0.0077561 | 0.0076095 | 0.0077755 | 0.014095 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| colCounts(X,rows,cols) | 1.077452 | 1.062035 | 0.8336938 | 1.059783 | 1.053696 | 0.0493111 | 100 |
| colCounts(X[rows,cols]) | 1.332838 | 1.295639 | 1.0081302 | 1.279660 | 1.263282 | 0.0827035 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.005357 | 0.0055655 | 0.0073684 | 0.0057185 | 0.0059035 | 0.163155 | 100 |
| rowCounts(X,cols,rows) | 0.005776 | 0.0059890 | 0.0062294 | 0.0061605 | 0.0063160 | 0.008153 | 100 |
| rowCounts(X[cols,rows]) | 0.006979 | 0.0072510 | 0.0075992 | 0.0074155 | 0.0075820 | 0.012321 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.078215 | 1.076094 | 0.8454301 | 1.077293 | 1.069874 | 0.0499709 | 100 |
| rowCounts(X[cols,rows]) | 1.302781 | 1.302848 | 1.0313312 | 1.296756 | 1.284323 | 0.0755171 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+10x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 5.357 | 5.5655 | 7.36838 | 5.7185 | 5.9035 | 163.155 | 100 |
| 1 | colCounts_X_S | 5.384 | 5.7790 | 7.69352 | 5.9465 | 6.1550 | 170.428 | 100 |
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| 1 | colCounts_X_S | 1.00504 | 1.038361 | 1.044126 | 1.039871 | 1.042602 | 1.044577 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.018947 | 0.019930 | 0.0208104 | 0.0205495 | 0.0212630 | 0.029576 | 100 |
| colCounts(X,rows,cols) | 0.029228 | 0.030619 | 0.0312689 | 0.0309315 | 0.0311545 | 0.063351 | 100 |
| colCounts(X[rows,cols]) | 0.035158 | 0.036291 | 0.0372238 | 0.0369725 | 0.0375915 | 0.051626 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.542619 | 1.536327 | 1.502561 | 1.505219 | 1.465198 | 2.141973 | 100 |
| colCounts(X[rows,cols]) | 1.855597 | 1.820923 | 1.788711 | 1.799192 | 1.767930 | 1.745537 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.023101 | 0.0236420 | 0.0240043 | 0.0238795 | 0.024174 | 0.027141 | 100 |
| rowCounts(X,cols,rows) | 0.027389 | 0.0280630 | 0.0289578 | 0.0286290 | 0.029635 | 0.035786 | 100 |
| rowCounts(X[cols,rows]) | 0.039200 | 0.0398555 | 0.0407704 | 0.0400935 | 0.040480 | 0.076089 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.185620 | 1.186998 | 1.206358 | 1.198894 | 1.225904 | 1.318522 | 100 |
| rowCounts(X[cols,rows]) | 1.696896 | 1.685792 | 1.698461 | 1.678992 | 1.674526 | 2.803471 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+100x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 18.947 | 19.930 | 20.8104 | 20.5495 | 21.263 | 29.576 | 100 |
| rowCounts_X_S | 23.101 | 23.642 | 24.0043 | 23.8795 | 24.174 | 27.141 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts_X_S | 1.219243 | 1.186252 | 1.153476 | 1.162048 | 1.136904 | 0.9176697 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.018640 | 0.019780 | 0.0206665 | 0.0203625 | 0.021280 | 0.027603 | 100 |
| colCounts(X,rows,cols) | 0.030097 | 0.031035 | 0.0320233 | 0.0317420 | 0.032234 | 0.051039 | 100 |
| colCounts(X[rows,cols]) | 0.038484 | 0.039508 | 0.0407278 | 0.0400310 | 0.040821 | 0.078229 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.614646 | 1.569009 | 1.549524 | 1.558846 | 1.514756 | 1.849038 | 100 |
| colCounts(X[rows,cols]) | 2.064592 | 1.997371 | 1.970712 | 1.965918 | 1.918280 | 2.834076 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.027136 | 0.0280595 | 0.0291683 | 0.0284025 | 0.029076 | 0.059775 | 100 |
| rowCounts(X,cols,rows) | 0.033165 | 0.0347540 | 0.0360522 | 0.0355060 | 0.036862 | 0.054925 | 100 |
| rowCounts(X[cols,rows]) | 0.044851 | 0.0455980 | 0.0463997 | 0.0458900 | 0.047052 | 0.053661 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.222177 | 1.238582 | 1.236003 | 1.250101 | 1.267781 | 0.9188624 | 100 |
| rowCounts(X[cols,rows]) | 1.652823 | 1.625047 | 1.590756 | 1.615703 | 1.618242 | 0.8977164 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+1000x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 18.640 | 19.7800 | 20.66652 | 20.3625 | 21.280 | 27.603 | 100 |
| rowCounts_X_S | 27.136 | 28.0595 | 29.16834 | 28.4025 | 29.076 | 59.775 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.455794 | 1.418579 | 1.411381 | 1.394843 | 1.366353 | 2.165526 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.020857 | 0.022367 | 0.0231282 | 0.0228645 | 0.0234875 | 0.030590 | 100 |
| colCounts(X,rows,cols) | 0.033442 | 0.034594 | 0.0353813 | 0.0351415 | 0.0358185 | 0.042246 | 100 |
| colCounts(X[rows,cols]) | 0.037980 | 0.039530 | 0.0412870 | 0.0404555 | 0.0411230 | 0.082091 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.603395 | 1.546654 | 1.529791 | 1.536946 | 1.525003 | 1.381040 | 100 |
| colCounts(X[rows,cols]) | 1.820971 | 1.767336 | 1.785137 | 1.769359 | 1.750846 | 2.683589 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.023112 | 0.0235175 | 0.0238726 | 0.023717 | 0.0240180 | 0.029028 | 100 |
| rowCounts(X,cols,rows) | 0.027530 | 0.0286325 | 0.0294635 | 0.029170 | 0.0300180 | 0.035179 | 100 |
| rowCounts(X[cols,rows]) | 0.042246 | 0.0427420 | 0.0435779 | 0.042984 | 0.0433395 | 0.077803 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.191156 | 1.217498 | 1.234196 | 1.229920 | 1.249813 | 1.211899 | 100 |
| rowCounts(X[cols,rows]) | 1.827882 | 1.817455 | 1.825437 | 1.812371 | 1.804459 | 2.680274 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+10x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 20.857 | 22.3670 | 23.12817 | 22.8645 | 23.4875 | 30.590 | 100 |
| rowCounts_X_S | 23.112 | 23.5175 | 23.87260 | 23.7170 | 24.0180 | 29.028 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts_X_S | 1.108117 | 1.051437 | 1.032187 | 1.037285 | 1.022587 | 0.9489376 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.210573 | 0.2135550 | 0.2153174 | 0.2152890 | 0.2168370 | 0.223632 | 100 |
| colCounts(X,rows,cols) | 0.267100 | 0.2696795 | 0.2726299 | 0.2705985 | 0.2715000 | 0.364316 | 100 |
| colCounts(X[rows,cols]) | 0.386361 | 0.3890185 | 0.4089667 | 0.3903310 | 0.3918915 | 1.222766 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.268444 | 1.262811 | 1.266177 | 1.256908 | 1.252093 | 1.629087 | 100 |
| colCounts(X[rows,cols]) | 1.834808 | 1.821631 | 1.899366 | 1.813056 | 1.807309 | 5.467759 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.212653 | 0.2143025 | 0.2183749 | 0.2154425 | 0.2170470 | 0.275730 | 100 |
| rowCounts(X,cols,rows) | 0.268597 | 0.2704125 | 0.2784853 | 0.2712515 | 0.2858325 | 0.327082 | 100 |
| rowCounts(X[cols,rows]) | 0.373669 | 0.3753110 | 0.3959550 | 0.3760725 | 0.3771535 | 1.189767 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.263076 | 1.261826 | 1.275262 | 1.259044 | 1.316915 | 1.186240 | 100 |
| rowCounts(X[cols,rows]) | 1.757177 | 1.751314 | 1.813189 | 1.745582 | 1.737658 | 4.314971 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+100x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 210.573 | 213.5550 | 215.3174 | 215.2890 | 216.837 | 223.632 | 100 |
| rowCounts_X_S | 212.653 | 214.3025 | 218.3749 | 215.4425 | 217.047 | 275.730 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.0000 | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.009878 | 1.0035 | 1.0142 | 1.000713 | 1.000968 | 1.232963 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.206296 | 0.2088270 | 0.2105008 | 0.2095975 | 0.211003 | 0.239486 | 100 |
| colCounts(X,rows,cols) | 0.257324 | 0.2595640 | 0.2612518 | 0.2607240 | 0.261561 | 0.295740 | 100 |
| colCounts(X[rows,cols]) | 0.368593 | 0.3708345 | 0.3903450 | 0.3718035 | 0.373097 | 1.183091 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.247353 | 1.242962 | 1.241096 | 1.243927 | 1.239608 | 1.234895 | 100 |
| colCounts(X[rows,cols]) | 1.786719 | 1.775798 | 1.854363 | 1.773893 | 1.768207 | 4.940126 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on logical+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.217393 | 0.218990 | 0.2234541 | 0.2204600 | 0.2218095 | 0.261642 | 100 |
| rowCounts(X,cols,rows) | 0.277694 | 0.279795 | 0.2933039 | 0.2808940 | 0.3022375 | 0.377908 | 100 |
| rowCounts(X[cols,rows]) | 0.393659 | 0.395616 | 0.4231071 | 0.3972265 | 0.4071675 | 1.205718 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.277382 | 1.277661 | 1.312591 | 1.274127 | 1.362599 | 1.444371 | 100 |
| rowCounts(X[cols,rows]) | 1.810817 | 1.806548 | 1.893485 | 1.801808 | 1.835663 | 4.608274 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on logical+1000x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 206.296 | 208.827 | 210.5009 | 209.5975 | 211.0030 | 239.486 | 100 |
| rowCounts_X_S | 217.393 | 218.990 | 223.4541 | 220.4600 | 221.8095 | 261.642 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.053792 | 1.048667 | 1.061535 | 1.051826 | 1.051215 | 1.092515 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.005416 | 0.0057005 | 0.0061513 | 0.0059020 | 0.0060645 | 0.031272 | 100 |
| colCounts(X,rows,cols) | 0.005895 | 0.0061230 | 0.0062979 | 0.0062915 | 0.0063865 | 0.007867 | 100 |
| colCounts(X[rows,cols]) | 0.007269 | 0.0075050 | 0.0077130 | 0.0076530 | 0.0077785 | 0.011217 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| colCounts(X,rows,cols) | 1.088442 | 1.074116 | 1.023841 | 1.065995 | 1.053096 | 0.2515669 | 100 |
| colCounts(X[rows,cols]) | 1.342134 | 1.316551 | 1.253885 | 1.296679 | 1.282628 | 0.3586915 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.005269 | 0.0055080 | 0.0059156 | 0.0056255 | 0.0057990 | 0.031555 | 100 |
| rowCounts(X,cols,rows) | 0.005696 | 0.0058985 | 0.0060822 | 0.0060715 | 0.0062050 | 0.007589 | 100 |
| rowCounts(X[cols,rows]) | 0.006934 | 0.0072965 | 0.0075060 | 0.0074625 | 0.0075995 | 0.012194 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.081040 | 1.070897 | 1.028170 | 1.079282 | 1.070012 | 0.2405007 | 100 |
| rowCounts(X[cols,rows]) | 1.315999 | 1.324709 | 1.268864 | 1.326549 | 1.310485 | 0.3864364 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+10x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 5.269 | 5.5080 | 5.91555 | 5.6255 | 5.7990 | 31.555 | 100 |
| 1 | colCounts_X_S | 5.416 | 5.7005 | 6.15128 | 5.9020 | 6.0645 | 31.272 | 100 |
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| 1 | colCounts_X_S | 1.027899 | 1.034949 | 1.039849 | 1.049151 | 1.045784 | 0.9910315 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.011864 | 0.0122845 | 0.0124659 | 0.012432 | 0.0126225 | 0.014931 | 100 |
| colCounts(X,rows,cols) | 0.013964 | 0.0144515 | 0.0149858 | 0.014630 | 0.0147830 | 0.045248 | 100 |
| colCounts(X[rows,cols]) | 0.028060 | 0.0284150 | 0.0288360 | 0.028585 | 0.0287925 | 0.037297 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.177006 | 1.176401 | 1.202144 | 1.176802 | 1.171163 | 3.030473 | 100 |
| colCounts(X[rows,cols]) | 2.365138 | 2.313077 | 2.313191 | 2.299308 | 2.281046 | 2.497957 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.014489 | 0.0147995 | 0.0149601 | 0.0149240 | 0.0150840 | 0.016553 | 100 |
| rowCounts(X,cols,rows) | 0.015342 | 0.0157365 | 0.0161278 | 0.0158935 | 0.0160595 | 0.023975 | 100 |
| rowCounts(X[cols,rows]) | 0.030468 | 0.0309350 | 0.0314921 | 0.0311505 | 0.0313750 | 0.065294 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.058872 | 1.063313 | 1.078056 | 1.064963 | 1.064671 | 1.448378 | 100 |
| rowCounts(X[cols,rows]) | 2.102837 | 2.090273 | 2.105067 | 2.087276 | 2.080019 | 3.944542 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+100x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 11.864 | 12.2845 | 12.46590 | 12.432 | 12.6225 | 14.931 | 100 |
| rowCounts_X_S | 14.489 | 14.7995 | 14.96013 | 14.924 | 15.0840 | 16.553 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.221258 | 1.20473 | 1.200084 | 1.200451 | 1.195009 | 1.108633 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.012617 | 0.0129420 | 0.0131594 | 0.013114 | 0.0133165 | 0.014948 | 100 |
| colCounts(X,rows,cols) | 0.015865 | 0.0162025 | 0.0164124 | 0.016323 | 0.0164750 | 0.021599 | 100 |
| colCounts(X[rows,cols]) | 0.034351 | 0.0348265 | 0.0354155 | 0.035082 | 0.0352675 | 0.066581 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.257430 | 1.251932 | 1.247203 | 1.244700 | 1.237187 | 1.444943 | 100 |
| colCounts(X[rows,cols]) | 2.722596 | 2.690967 | 2.691273 | 2.675156 | 2.648406 | 4.454174 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.015106 | 0.015394 | 0.0158660 | 0.0155255 | 0.015647 | 0.041759 | 100 |
| rowCounts(X,cols,rows) | 0.016699 | 0.016973 | 0.0174394 | 0.0170915 | 0.017284 | 0.032095 | 100 |
| rowCounts(X[cols,rows]) | 0.032107 | 0.032626 | 0.0331494 | 0.0328140 | 0.033003 | 0.042608 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.105455 | 1.102572 | 1.099165 | 1.100866 | 1.104621 | 0.7685768 | 100 |
| rowCounts(X[cols,rows]) | 2.125447 | 2.119397 | 2.089327 | 2.113555 | 2.109222 | 1.0203309 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+1000x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 12.617 | 12.942 | 13.15938 | 13.1140 | 13.3165 | 14.948 | 100 |
| rowCounts_X_S | 15.106 | 15.394 | 15.86605 | 15.5255 | 15.6470 | 41.759 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.197274 | 1.189461 | 1.205684 | 1.183887 | 1.175008 | 2.793618 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.012544 | 0.0128755 | 0.0130978 | 0.013028 | 0.0132255 | 0.016785 | 100 |
| colCounts(X,rows,cols) | 0.016023 | 0.0163535 | 0.0165430 | 0.016547 | 0.0167005 | 0.018115 | 100 |
| colCounts(X[rows,cols]) | 0.029667 | 0.0301705 | 0.0309225 | 0.030377 | 0.0306820 | 0.065074 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.277344 | 1.270125 | 1.263028 | 1.27011 | 1.262750 | 1.079237 | 100 |
| colCounts(X[rows,cols]) | 2.365035 | 2.343249 | 2.360886 | 2.33167 | 2.319912 | 3.876914 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.014244 | 0.0146340 | 0.0149823 | 0.0147930 | 0.0149585 | 0.022779 | 100 |
| rowCounts(X,cols,rows) | 0.015847 | 0.0161915 | 0.0163528 | 0.0163275 | 0.0164940 | 0.018114 | 100 |
| rowCounts(X[cols,rows]) | 0.033581 | 0.0339280 | 0.0346973 | 0.0340915 | 0.0343495 | 0.067027 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.112539 | 1.106430 | 1.091470 | 1.103732 | 1.102651 | 0.7952061 | 100 |
| rowCounts(X[cols,rows]) | 2.357554 | 2.318436 | 2.315878 | 2.304570 | 2.296320 | 2.9424909 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+10x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 12.544 | 12.8755 | 13.09785 | 13.028 | 13.2255 | 16.785 | 100 |
| rowCounts_X_S | 14.244 | 14.6340 | 14.98234 | 14.793 | 14.9585 | 22.779 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.135523 | 1.136577 | 1.143878 | 1.135477 | 1.131035 | 1.357105 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.068132 | 0.0685380 | 0.0691408 | 0.0687405 | 0.0689565 | 0.086163 | 100 |
| colCounts(X,rows,cols) | 0.088553 | 0.0890335 | 0.0906975 | 0.0892770 | 0.0895445 | 0.181805 | 100 |
| colCounts(X[rows,cols]) | 0.243007 | 0.2442635 | 0.2623006 | 0.2447515 | 0.2453595 | 1.067442 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.299727 | 1.299038 | 1.311779 | 1.298754 | 1.298565 | 2.110012 | 100 |
| colCounts(X[rows,cols]) | 3.566709 | 3.563913 | 3.793715 | 3.560514 | 3.558178 | 12.388635 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.091334 | 0.0918785 | 0.0932175 | 0.0921075 | 0.0924055 | 0.117729 | 100 |
| rowCounts(X,cols,rows) | 0.094401 | 0.0948775 | 0.0968161 | 0.0950850 | 0.0955015 | 0.127119 | 100 |
| rowCounts(X[cols,rows]) | 0.251592 | 0.2528315 | 0.2755978 | 0.2533825 | 0.2556230 | 1.137349 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.033580 | 1.032641 | 1.038604 | 1.032326 | 1.033505 | 1.079759 | 100 |
| rowCounts(X[cols,rows]) | 2.754637 | 2.751803 | 2.956502 | 2.750943 | 2.766318 | 9.660738 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+100x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 68.132 | 68.5380 | 69.14082 | 68.7405 | 68.9565 | 86.163 | 100 |
| rowCounts_X_S | 91.334 | 91.8785 | 93.21751 | 92.1075 | 92.4055 | 117.729 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.340545 | 1.340548 | 1.348227 | 1.339931 | 1.340055 | 1.366352 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.063982 | 0.0644120 | 0.0652741 | 0.0646515 | 0.0648415 | 0.091861 | 100 |
| colCounts(X,rows,cols) | 0.081098 | 0.0814875 | 0.0825432 | 0.0816145 | 0.0818045 | 0.116981 | 100 |
| colCounts(X[rows,cols]) | 0.225304 | 0.2266645 | 0.2437216 | 0.2272195 | 0.2277855 | 1.050614 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.267513 | 1.265098 | 1.264563 | 1.262376 | 1.261607 | 1.273457 | 100 |
| colCounts(X[rows,cols]) | 3.521365 | 3.518979 | 3.733819 | 3.514528 | 3.512958 | 11.436997 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.095760 | 0.0962295 | 0.0969354 | 0.0964120 | 0.0966525 | 0.126040 | 100 |
| rowCounts(X,cols,rows) | 0.101907 | 0.1023455 | 0.1038735 | 0.1025330 | 0.1029950 | 0.209546 | 100 |
| rowCounts(X[cols,rows]) | 0.272514 | 0.2738145 | 0.2913992 | 0.2744165 | 0.2751320 | 1.088787 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.064192 | 1.063556 | 1.071574 | 1.063488 | 1.065622 | 1.662536 | 100 |
| rowCounts(X[cols,rows]) | 2.845802 | 2.845432 | 3.006118 | 2.846290 | 2.846610 | 8.638424 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on integer+1000x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 63.982 | 64.4120 | 65.27407 | 64.6515 | 64.8415 | 91.861 | 100 |
| rowCounts_X_S | 95.760 | 96.2295 | 96.93537 | 96.4120 | 96.6525 | 126.040 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.496671 | 1.493969 | 1.485052 | 1.491257 | 1.490596 | 1.372073 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.005776 | 0.0060265 | 0.0065510 | 0.0062320 | 0.0063900 | 0.034787 | 100 |
| colCounts(X,rows,cols) | 0.006246 | 0.0064510 | 0.0067978 | 0.0066205 | 0.0067825 | 0.015304 | 100 |
| colCounts(X[rows,cols]) | 0.007646 | 0.0079705 | 0.0082681 | 0.0081205 | 0.0083660 | 0.012421 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| colCounts(X,rows,cols) | 1.081371 | 1.070439 | 1.037670 | 1.062339 | 1.061424 | 0.4399345 | 100 |
| colCounts(X[rows,cols]) | 1.323754 | 1.322575 | 1.262102 | 1.303033 | 1.309233 | 0.3570587 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.005661 | 0.0059185 | 0.0063226 | 0.0060510 | 0.0062015 | 0.030947 | 100 |
| rowCounts(X,cols,rows) | 0.006097 | 0.0063860 | 0.0066006 | 0.0065365 | 0.0066595 | 0.009885 | 100 |
| rowCounts(X[cols,rows]) | 0.007422 | 0.0077140 | 0.0079681 | 0.0079370 | 0.0080815 | 0.012554 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.077018 | 1.078990 | 1.043979 | 1.080235 | 1.073853 | 0.3194171 | 100 |
| rowCounts(X[cols,rows]) | 1.311076 | 1.303371 | 1.260251 | 1.311684 | 1.303152 | 0.4056613 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+10x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 5.661 | 5.9185 | 6.32259 | 6.051 | 6.2015 | 30.947 | 100 |
| 1 | colCounts_X_S | 5.776 | 6.0265 | 6.55103 | 6.232 | 6.3900 | 34.787 | 100 |
| expr | min | lq | mean | median | uq | max | neval | |
|---|---|---|---|---|---|---|---|---|
| 2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| 1 | colCounts_X_S | 1.020314 | 1.018248 | 1.036131 | 1.029912 | 1.030396 | 1.124083 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.022840 | 0.023279 | 0.0234452 | 0.0233915 | 0.023573 | 0.025221 | 100 |
| colCounts(X,rows,cols) | 0.024030 | 0.024287 | 0.0248283 | 0.0244435 | 0.024567 | 0.059807 | 100 |
| colCounts(X[rows,cols]) | 0.040091 | 0.040496 | 0.0407492 | 0.0406490 | 0.040848 | 0.044909 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.052102 | 1.043301 | 1.058993 | 1.044974 | 1.042167 | 2.371318 | 100 |
| colCounts(X[rows,cols]) | 1.755298 | 1.739594 | 1.738062 | 1.737768 | 1.732830 | 1.780619 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.028664 | 0.0289325 | 0.0290869 | 0.0290480 | 0.029165 | 0.031082 | 100 |
| rowCounts(X,cols,rows) | 0.029365 | 0.0297075 | 0.0300238 | 0.0298345 | 0.030020 | 0.035005 | 100 |
| rowCounts(X[cols,rows]) | 0.046469 | 0.0468455 | 0.0475393 | 0.0471835 | 0.047487 | 0.083667 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.024456 | 1.026787 | 1.032210 | 1.027076 | 1.029316 | 1.126214 | 100 |
| rowCounts(X[cols,rows]) | 1.621162 | 1.619131 | 1.634387 | 1.624329 | 1.628219 | 2.691815 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+100x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 22.840 | 23.2790 | 23.44519 | 23.3915 | 23.573 | 25.221 | 100 |
| rowCounts_X_S | 28.664 | 28.9325 | 29.08693 | 29.0480 | 29.165 | 31.082 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.254991 | 1.242858 | 1.240635 | 1.241819 | 1.237221 | 1.232386 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.022194 | 0.0225290 | 0.0233550 | 0.0226715 | 0.0229025 | 0.054181 | 100 |
| colCounts(X,rows,cols) | 0.023808 | 0.0241005 | 0.0250075 | 0.0242805 | 0.0245185 | 0.054084 | 100 |
| colCounts(X[rows,cols]) | 0.042277 | 0.0429260 | 0.0445920 | 0.0431880 | 0.0435835 | 0.080696 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| colCounts(X,rows,cols) | 1.072722 | 1.069754 | 1.070753 | 1.070970 | 1.070560 | 0.9982097 | 100 |
| colCounts(X[rows,cols]) | 1.904884 | 1.905366 | 1.909308 | 1.904947 | 1.903002 | 1.4893782 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.029197 | 0.0297760 | 0.0318996 | 0.0303520 | 0.0314330 | 0.062679 | 100 |
| rowCounts(X,cols,rows) | 0.031702 | 0.0322705 | 0.0341869 | 0.0331555 | 0.0340710 | 0.054385 | 100 |
| rowCounts(X[cols,rows]) | 0.050092 | 0.0514180 | 0.0548176 | 0.0529750 | 0.0543675 | 0.082837 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.085797 | 1.083776 | 1.071700 | 1.092366 | 1.083924 | 0.867675 | 100 |
| rowCounts(X[cols,rows]) | 1.715656 | 1.726827 | 1.718441 | 1.745354 | 1.729631 | 1.321607 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+1000x10 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 22.194 | 22.529 | 23.35505 | 22.6715 | 22.9025 | 54.181 | 100 |
| rowCounts_X_S | 29.197 | 29.776 | 31.89964 | 30.3520 | 31.4330 | 62.679 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 100 |
| rowCounts_X_S | 1.315536 | 1.321674 | 1.365856 | 1.338773 | 1.37247 | 1.156845 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.023795 | 0.0241870 | 0.0244465 | 0.0244075 | 0.024690 | 0.027255 | 100 |
| colCounts(X,rows,cols) | 0.027009 | 0.0273575 | 0.0278870 | 0.0275005 | 0.027737 | 0.047748 | 100 |
| colCounts(X[rows,cols]) | 0.043498 | 0.0444555 | 0.0455218 | 0.0447985 | 0.045130 | 0.082122 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.135070 | 1.131083 | 1.140735 | 1.126723 | 1.123410 | 1.751899 | 100 |
| colCounts(X[rows,cols]) | 1.828031 | 1.837992 | 1.862096 | 1.835440 | 1.827865 | 3.013098 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.026702 | 0.027090 | 0.0274589 | 0.0272360 | 0.0274380 | 0.037999 | 100 |
| rowCounts(X,cols,rows) | 0.028191 | 0.028617 | 0.0289895 | 0.0287405 | 0.0289060 | 0.042267 | 100 |
| rowCounts(X[cols,rows]) | 0.046817 | 0.047344 | 0.0482336 | 0.0475515 | 0.0478495 | 0.085224 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.055764 | 1.056368 | 1.055740 | 1.055239 | 1.053502 | 1.112319 | 100 |
| rowCounts(X[cols,rows]) | 1.753314 | 1.747656 | 1.756576 | 1.745906 | 1.743914 | 2.242796 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+10x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 23.795 | 24.187 | 24.44652 | 24.4075 | 24.690 | 27.255 | 100 |
| rowCounts_X_S | 26.702 | 27.090 | 27.45889 | 27.2360 | 27.438 | 37.999 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 100 |
| rowCounts_X_S | 1.122168 | 1.120023 | 1.123223 | 1.115887 | 1.1113 | 1.394203 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.176507 | 0.1770745 | 0.1824289 | 0.1774740 | 0.1821225 | 0.229395 | 100 |
| colCounts(X,rows,cols) | 0.183405 | 0.1839240 | 0.1926547 | 0.1843275 | 0.1914855 | 0.344075 | 100 |
| colCounts(X[rows,cols]) | 0.362784 | 0.3646015 | 0.4347960 | 0.3666355 | 0.3951210 | 1.290293 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.039081 | 1.038682 | 1.056054 | 1.038617 | 1.051411 | 1.499924 | 100 |
| colCounts(X[rows,cols]) | 2.055352 | 2.059029 | 2.383373 | 2.065855 | 2.169534 | 5.624765 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.213232 | 0.2137795 | 0.2172787 | 0.214029 | 0.2143360 | 0.296912 | 100 |
| rowCounts(X,cols,rows) | 0.215175 | 0.2158875 | 0.2187254 | 0.216126 | 0.2163690 | 0.283987 | 100 |
| rowCounts(X[cols,rows]) | 0.391095 | 0.3973470 | 0.4712330 | 0.399968 | 0.4033565 | 1.213951 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 100 |
| rowCounts(X,cols,rows) | 1.009112 | 1.009861 | 1.006658 | 1.009798 | 1.009485 | 0.9564686 | 100 |
| rowCounts(X[cols,rows]) | 1.834129 | 1.858677 | 2.168795 | 1.868756 | 1.881889 | 4.0885885 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+100x1000 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 176.507 | 177.0745 | 182.4289 | 177.474 | 182.1225 | 229.395 | 100 |
| rowCounts_X_S | 213.232 | 213.7795 | 217.2787 | 214.029 | 214.3360 | 296.912 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.208065 | 1.207286 | 1.191032 | 1.205974 | 1.176878 | 1.294326 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> rows <- sample.int(dim(X)[1], size = dim(X)[1] * 0.7)
> cols <- sample.int(dim(X)[2], size = dim(X)[2] * 0.7)
> X_S <- X[rows, cols]
> value <- 42> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X,rows,cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows,cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")> X <- t(X)
> X_S <- t(X_S)> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X,cols,rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols,rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")Table: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 0.172232 | 0.1727555 | 0.1761024 | 0.1730220 | 0.1775325 | 0.204671 | 100 |
| colCounts(X,rows,cols) | 0.176541 | 0.1769315 | 0.1809258 | 0.1772205 | 0.1819450 | 0.255468 | 100 |
| colCounts(X[rows,cols]) | 0.356451 | 0.3595605 | 0.4228386 | 0.3610030 | 0.3692855 | 1.199084 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| colCounts(X,rows,cols) | 1.025019 | 1.024173 | 1.027390 | 1.024266 | 1.024855 | 1.248189 | 100 |
| colCounts(X[rows,cols]) | 2.069598 | 2.081326 | 2.401095 | 2.086457 | 2.080101 | 5.858593 | 100 |
| Table: Benchmarking of rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 0.217591 | 0.2181705 | 0.2216322 | 0.2183865 | 0.2192595 | 0.269604 | 100 |
| rowCounts(X,cols,rows) | 0.219859 | 0.2203595 | 0.2254859 | 0.2207110 | 0.2236775 | 0.410901 | 100 |
| rowCounts(X[cols,rows]) | 0.402089 | 0.4058085 | 0.8574803 | 0.4078440 | 0.4189660 | 39.273514 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts(X,cols,rows) | 1.010423 | 1.010033 | 1.017388 | 1.010644 | 1.020150 | 1.524091 | 100 |
| rowCounts(X[cols,rows]) | 1.847912 | 1.860052 | 3.868934 | 1.867533 | 1.910823 | 145.671110 | 100 |
| Figure: Benchmarking of colCounts_X_S(), colCounts(X,rows,cols)() and colCounts(X[rows,cols])() on double+1000x100 data as well as rowCounts_X_S(), rowCounts(X,cols,rows)() and rowCounts(X[cols,rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 172.232 | 172.7555 | 176.1024 | 173.0220 | 177.5325 | 204.671 | 100 |
| rowCounts_X_S | 217.591 | 218.1705 | 221.6322 | 218.3865 | 219.2595 | 269.604 | 100 |
| expr | min | lq | mean | median | uq | max | neval |
|---|---|---|---|---|---|---|---|
| colCounts_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 100 |
| rowCounts_X_S | 1.26336 | 1.262886 | 1.258542 | 1.262189 | 1.235039 | 1.317255 | 100 |
| Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-2 matrixStats_0.14.0 ggplot2_1.0.1
[4] knitr_1.10.5 R.devices_2.13.0 R.utils_2.0.2
[7] R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] base64enc_0.1-2 colorspace_1.2-6 dichromat_2.0-0 digest_0.6.8
[5] grid_3.0.2 gtable_0.1.2 highr_0.5 labeling_0.3
[9] magrittr_1.5 MASS_7.3-29 munsell_0.4.2 plyr_1.8
[13] proto_0.3-10 R.cache_0.10.0 RColorBrewer_1.1-2 reshape2_1.2.2
[17] R.rsp_0.20.0 scales_0.2.3 stringi_0.4-1 stringr_1.0.0
[21] tools_3.0.2 Total processing time was 14.81 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowCounts_subset')Copyright Dongcan Jiang. Last updated on 2015-05-09 07:47:48 (+0000 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)