-
Notifications
You must be signed in to change notification settings - Fork 0
varDiff
matrixStats: Benchmark report
This report benchmark the performance of varDiff() against alternative methods.
- N/A
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (naProb > 0)
+ x[sample(n, size = naProb * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n=1000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n=1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.0316 | 0.0341 | 0.0417 | 0.0377 | 0.0520 | 0.0793 |
| 3 | diff | 0.0316 | 0.0352 | 0.0425 | 0.0389 | 0.0512 | 0.0874 |
| 1 | varDiff | 0.0423 | 0.0466 | 0.0609 | 0.0518 | 0.0722 | 0.3969 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 1.000 |
| 3 | diff | 1.000 | 1.034 | 1.020 | 1.031 | 0.9852 | 1.102 |
| 1 | varDiff | 1.341 | 1.367 | 1.461 | 1.372 | 1.3889 | 5.005 |
| Figure: Benchmarking of varDiff(), var() and diff() on integer+n=1000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=10000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n=10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.0982 | 0.1014 | 0.1233 | 0.1055 | 0.1551 | 0.2240 |
| 1 | varDiff | 0.1263 | 0.1290 | 0.1547 | 0.1343 | 0.1798 | 0.2487 |
| 3 | diff | 0.2110 | 0.2148 | 0.2565 | 0.2181 | 0.3134 | 0.4158 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | varDiff | 1.286 | 1.271 | 1.254 | 1.274 | 1.159 | 1.110 |
| 3 | diff | 2.149 | 2.118 | 2.079 | 2.067 | 2.020 | 1.856 |
| Figure: Benchmarking of varDiff(), var() and diff() on integer+n=10000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=100000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n=100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.7691 | 0.9649 | 1.212 | 1.213 | 1.428 | 1.901 |
| 1 | varDiff | 0.9878 | 1.0284 | 1.427 | 1.547 | 1.602 | 2.553 |
| 3 | diff | 2.0356 | 2.3825 | 3.122 | 2.985 | 3.344 | 13.797 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | varDiff | 1.284 | 1.066 | 1.177 | 1.275 | 1.122 | 1.343 |
| 3 | diff | 2.647 | 2.469 | 2.575 | 2.460 | 2.342 | 7.256 |
| Figure: Benchmarking of varDiff(), var() and diff() on integer+n=100000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=1000000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on integer+n=1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 9.672 | 12.62 | 14.80 | 14.88 | 16.45 | 30.25 |
| 1 | varDiff | 11.899 | 15.06 | 19.30 | 18.38 | 21.26 | 36.62 |
| 3 | diff | 21.382 | 30.02 | 37.36 | 33.40 | 37.69 | 344.88 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | varDiff | 1.230 | 1.193 | 1.304 | 1.235 | 1.293 | 1.21 |
| 3 | diff | 2.211 | 2.378 | 2.525 | 2.245 | 2.292 | 11.40 |
| Figure: Benchmarking of varDiff(), var() and diff() on integer+n=1000000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (naProb > 0)
+ x[sample(n, size = naProb * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n=1000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n=1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 0.0262 | 0.0316 | 0.0393 | 0.0346 | 0.0479 | 0.1132 |
| 2 | var | 0.0281 | 0.0316 | 0.0414 | 0.0370 | 0.0508 | 0.0662 |
| 1 | varDiff | 0.0397 | 0.0420 | 0.0545 | 0.0474 | 0.0664 | 0.2067 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2 | var | 1.073 | 1.000 | 1.053 | 1.067 | 1.060 | 0.585 |
| 1 | varDiff | 1.515 | 1.329 | 1.385 | 1.367 | 1.385 | 1.827 |
| Figure: Benchmarking of varDiff(), var() and diff() on double+n=1000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=10000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n=10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.0820 | 0.0847 | 0.1035 | 0.0907 | 0.1313 | 0.2383 |
| 1 | varDiff | 0.1101 | 0.1141 | 0.1286 | 0.1166 | 0.1215 | 0.2029 |
| 3 | diff | 0.1532 | 0.1669 | 0.1956 | 0.1769 | 0.2412 | 0.3026 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 1.0000 |
| 1 | varDiff | 1.343 | 1.348 | 1.242 | 1.287 | 0.9252 | 0.8514 |
| 3 | diff | 1.869 | 1.970 | 1.890 | 1.951 | 1.8372 | 1.2698 |
| Figure: Benchmarking of varDiff(), var() and diff() on double+n=10000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=100000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n=100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 0.5998 | 0.6296 | 0.8676 | 0.9362 | 1.010 | 1.321 |
| 1 | varDiff | 0.7992 | 1.0149 | 1.2725 | 1.2948 | 1.508 | 2.005 |
| 3 | diff | 1.6207 | 2.1910 | 2.6907 | 2.4173 | 2.763 | 13.277 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | varDiff | 1.333 | 1.612 | 1.467 | 1.383 | 1.493 | 1.518 |
| 3 | diff | 2.702 | 3.480 | 3.101 | 2.582 | 2.737 | 10.050 |
| Figure: Benchmarking of varDiff(), var() and diff() on double+n=100000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=1000000"]]
> stats <- microbenchmark(varDiff = varDiff(x), var = var(x), diff = diff(x), unit = "ms")Table: Benchmarking of varDiff(), var() and diff() on double+n=1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 7.138 | 7.39 | 9.509 | 9.68 | 10.67 | 14.78 |
| 1 | varDiff | 10.347 | 12.24 | 16.218 | 15.50 | 17.09 | 35.92 |
| 3 | diff | 21.823 | 26.80 | 32.124 | 30.88 | 35.89 | 46.96 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | var | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | varDiff | 1.450 | 1.656 | 1.706 | 1.601 | 1.601 | 2.430 |
| 3 | diff | 3.057 | 3.627 | 3.378 | 3.190 | 3.362 | 3.177 |
| Figure: Benchmarking of varDiff(), var() and diff() on double+n=1000000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 GenomeInfoDb_1.3.13 formatR_1.0.3
[4] plyr_1.8.1 base64enc_0.1-3 tools_3.2.0
[7] digest_0.6.8 RSQLite_1.0.0 annotate_1.45.2
[10] evaluate_0.5.7 gtable_0.1.2 R.cache_0.11.1-9000
[13] lattice_0.20-30 DBI_0.3.1 parallel_3.2.0
[16] mvtnorm_1.0-2 proto_0.3-10 R.rsp_0.20.0
[19] genefilter_1.49.2 stringr_0.6.2 IRanges_2.1.41
[22] S4Vectors_0.5.21 stats4_3.2.0 grid_3.2.0
[25] Biobase_2.27.2 AnnotationDbi_1.29.17 XML_3.98-1.1
[28] survival_2.38-1 multcomp_1.3-9 TH.data_1.0-6
[31] reshape2_1.4.1 scales_0.2.4 MASS_7.3-39
[34] splines_3.2.0 BiocGenerics_0.13.6 xtable_1.8-0
[37] mime_0.2.1 colorspace_1.2-4 labeling_0.3
[40] sandwich_2.3-2 munsell_0.4.2 Cairo_1.5-6
[43] zoo_1.7-12 Total processing time was 26.27 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('varDiff')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:38:42 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)







