-
Notifications
You must be signed in to change notification settings - Fork 0
colRowRanks
matrixStats: Benchmark report
This report benchmark the performance of colRanks() and rowRanks() against alternative methods.
- apply() + rank()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805858 43.1 1442291 77.1 1442291 77.1
Vcells 12281216 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804682 43.0 1442291 77.1 1442291 77.1
Vcells 12277671 93.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.0219 | 0.0370 | 0.0634 | 0.0458 | 0.0835 | 0.4666 |
| apply+rank | 0.6086 | 0.6679 | 0.9051 | 0.9907 | 1.0781 | 1.6838 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.000 |
| apply+rank | 27.73 | 18.07 | 14.27 | 21.63 | 12.91 | 3.609 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.0112 | 0.0192 | 0.0332 | 0.0258 | 0.0423 | 0.216 |
| apply+rank | 0.6194 | 0.9162 | 1.0319 | 0.9658 | 1.0848 | 2.591 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.00 | 1.0 | 1.00 | 1.00 | 1.00 | 1 |
| apply+rank | 55.48 | 47.6 | 31.09 | 37.45 | 25.62 | 12 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+10x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 11.16 | 19.25 | 33.19 | 25.79 | 42.35 | 216.0 |
| 1 | colRanks | 21.94 | 36.96 | 63.43 | 45.81 | 83.54 | 466.6 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | colRanks | 1.965 | 1.92 | 1.911 | 1.776 | 1.973 | 2.16 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804858 43.0 1442291 77.1 1442291 77.1
Vcells 12278904 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804852 43.0 1442291 77.1 1442291 77.1
Vcells 12283947 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.4677 | 0.5372 | 0.6366 | 0.6071 | 0.6731 | 5.088 |
| apply+rank | 6.6997 | 8.6540 | 10.1316 | 10.2144 | 10.8734 | 19.869 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.000 |
| apply+rank | 14.32 | 16.11 | 15.92 | 16.83 | 16.15 | 3.905 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.430 | 0.5565 | 0.5758 | 0.5713 | 0.6182 | 1.011 |
| apply+rank | 6.774 | 10.0188 | 10.6447 | 10.2421 | 10.6195 | 22.862 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.00 | 1 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+rank | 15.75 | 18 | 18.49 | 17.93 | 17.18 | 22.61 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+100x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 430.0 | 556.5 | 575.8 | 571.3 | 618.2 | 1011 |
| 1 | colRanks | 467.7 | 537.2 | 636.6 | 607.1 | 673.1 | 5088 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.088 | 0.9654 | 1.106 | 1.063 | 1.089 | 5.031 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804893 43.0 1442291 77.1 1442291 77.1
Vcells 12278927 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804887 43.0 1442291 77.1 1442291 77.1
Vcells 12283970 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.5867 | 0.6458 | 0.6699 | 0.6581 | 0.7141 | 0.8808 |
| apply+rank | 2.1369 | 2.2239 | 2.5919 | 2.3563 | 2.9588 | 3.3664 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| apply+rank | 3.642 | 3.444 | 3.869 | 3.581 | 4.143 | 3.822 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.5613 | 0.6327 | 0.6648 | 0.6569 | 0.6679 | 1.409 |
| apply+rank | 2.2978 | 2.9965 | 3.2506 | 3.0893 | 3.1749 | 7.486 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| apply+rank | 4.094 | 4.736 | 4.89 | 4.703 | 4.754 | 5.312 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+1000x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 561.3 | 632.7 | 664.8 | 656.9 | 667.9 | 1409.3 |
| 1 | colRanks | 586.7 | 645.8 | 669.9 | 658.1 | 714.1 | 880.8 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.045 | 1.021 | 1.008 | 1.002 | 1.069 | 0.625 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804931 43.0 1442291 77.1 1442291 77.1
Vcells 12279515 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804925 43.0 1442291 77.1 1442291 77.1
Vcells 12284558 93.8 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.3218 | 0.3823 | 0.4225 | 0.3988 | 0.4566 | 0.788 |
| apply+rank | 56.2760 | 70.3403 | 79.6412 | 80.8709 | 87.5793 | 142.845 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.0 | 1 | 1.0 | 1.0 | 1.0 | 1.0 |
| apply+rank | 174.9 | 184 | 188.5 | 202.8 | 191.8 | 181.3 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.291 | 0.2951 | 0.3405 | 0.3465 | 0.3503 | 0.5401 |
| apply+rank | 55.647 | 63.4144 | 69.8360 | 67.9174 | 72.6635 | 204.0764 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.0 | 1.0 | 1.0 | 1 | 1.0 | 1.0 |
| apply+rank | 191.2 | 214.9 | 205.1 | 196 | 207.4 | 377.9 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+10x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 291.0 | 295.1 | 340.5 | 346.5 | 350.3 | 540.1 |
| 1 | colRanks | 321.8 | 382.3 | 422.5 | 398.8 | 456.6 | 788.0 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.106 | 1.296 | 1.241 | 1.151 | 1.303 | 1.459 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804966 43.0 1442291 77.1 1442291 77.1
Vcells 12279858 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804960 43.0 1442291 77.1 1442291 77.1
Vcells 12329901 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 4.616 | 4.664 | 5.255 | 5.019 | 5.529 | 10.61 |
| apply+rank | 66.844 | 80.143 | 90.069 | 91.047 | 95.747 | 124.23 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 |
| apply+rank | 14.48 | 17.18 | 17.14 | 18.14 | 17.32 | 11.7 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 4.049 | 4.40 | 4.782 | 4.612 | 5.195 | 5.655 |
| apply+rank | 67.583 | 76.33 | 86.739 | 82.782 | 93.011 | 212.121 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.00 |
| apply+rank | 16.69 | 17.35 | 18.14 | 17.95 | 17.9 | 37.51 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+100x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 4.049 | 4.400 | 4.782 | 4.612 | 5.195 | 5.655 |
| 1 | colRanks | 4.616 | 4.664 | 5.255 | 5.019 | 5.529 | 10.614 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.14 | 1.06 | 1.099 | 1.088 | 1.064 | 1.877 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805003 43.0 1442291 77.1 1442291 77.1
Vcells 12280280 93.7 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 804997 43.0 1442291 77.1 1442291 77.1
Vcells 12330323 94.1 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 5.555 | 6.245 | 7.023 | 7.29 | 7.689 | 9.302 |
| apply+rank | 21.082 | 26.730 | 30.861 | 29.52 | 32.120 | 143.992 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.000 | 1.000 | 1.000 | 1.00 | 1.000 | 1.00 |
| apply+rank | 3.795 | 4.281 | 4.394 | 4.05 | 4.177 | 15.48 |
| Table: Benchmarking of rowRanks() and apply+rank() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 5.331 | 5.563 | 6.555 | 6.465 | 7.429 | 10.13 |
| apply+rank | 20.240 | 22.058 | 27.375 | 26.859 | 31.184 | 66.52 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| apply+rank | 3.796 | 3.965 | 4.176 | 4.154 | 4.198 | 6.566 |
| Figure: Benchmarking of colRanks() and apply+rank() on integer+1000x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 5.331 | 5.563 | 6.555 | 6.465 | 7.429 | 10.131 |
| 1 | colRanks | 5.555 | 6.245 | 7.023 | 7.290 | 7.689 | 9.302 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 |
| 1 | colRanks | 1.042 | 1.123 | 1.071 | 1.128 | 1.035 | 0.9182 |
| Figure: Benchmarking of colRanks() and rowRanks() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ } else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805046 43.0 1442291 77.1 1442291 77.1
Vcells 12396419 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805031 43.0 1442291 77.1 1442291 77.1
Vcells 12396547 94.6 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.0227 | 0.0277 | 0.0468 | 0.0385 | 0.0601 | 0.0978 |
| apply+rank | 0.5963 | 0.6175 | 0.7297 | 0.6298 | 0.9014 | 1.3262 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.0 | 1.00 | 1.00 | 1.00 |
| apply+rank | 26.25 | 22.28 | 15.6 | 16.36 | 15.01 | 13.56 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.0127 | 0.0204 | 0.0351 | 0.0333 | 0.047 | 0.0789 |
| apply+rank | 0.6175 | 0.9206 | 0.9927 | 0.9464 | 1.014 | 3.9700 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.0 | 1.00 | 1.0 | 1.00 | 1.0 | 1.00 |
| apply+rank | 48.6 | 45.12 | 28.3 | 28.42 | 21.6 | 50.31 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+10x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 12.70 | 20.40 | 35.08 | 33.3 | 46.97 | 78.92 |
| 1 | colRanks | 22.71 | 27.72 | 46.79 | 38.5 | 60.05 | 97.78 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.788 | 1.358 | 1.334 | 1.156 | 1.279 | 1.239 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805074 43.0 1442291 77.1 1442291 77.1
Vcells 12396430 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805068 43.0 1442291 77.1 1442291 77.1
Vcells 12406473 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.4993 | 0.5718 | 0.6483 | 0.6825 | 0.7181 | 0.8019 |
| apply+rank | 6.5873 | 7.1349 | 9.7630 | 10.2284 | 10.9937 | 19.8936 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+rank | 13.19 | 12.48 | 15.06 | 14.99 | 15.31 | 24.81 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.4727 | 0.4958 | 0.5727 | 0.5399 | 0.6533 | 0.7749 |
| apply+rank | 6.7336 | 7.1317 | 9.0582 | 8.3650 | 10.4796 | 19.3332 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+rank | 14.24 | 14.38 | 15.82 | 15.49 | 16.04 | 24.95 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+100x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 472.7 | 495.8 | 572.7 | 539.9 | 653.3 | 774.9 |
| 1 | colRanks | 499.3 | 571.8 | 648.3 | 682.5 | 718.1 | 801.9 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 1.056 | 1.153 | 1.132 | 1.264 | 1.099 | 1.035 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805109 43.0 1442291 77.1 1442291 77.1
Vcells 12397126 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805103 43.0 1442291 77.1 1442291 77.1
Vcells 12407169 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.6656 | 0.6742 | 0.7494 | 0.7316 | 0.7418 | 1.035 |
| apply+rank | 2.1288 | 2.2208 | 2.4954 | 2.2566 | 2.7636 | 3.455 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| apply+rank | 3.198 | 3.294 | 3.33 | 3.084 | 3.725 | 3.338 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.6394 | 0.7622 | 0.813 | 0.8173 | 0.8625 | 0.952 |
| apply+rank | 2.1700 | 3.1711 | 3.131 | 3.2519 | 3.3481 | 3.532 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 |
| apply+rank | 3.394 | 4.16 | 3.851 | 3.979 | 3.882 | 3.71 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+1000x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 665.6 | 674.2 | 749.4 | 731.6 | 741.8 | 1035 |
| rowRanks | 639.4 | 762.2 | 813.0 | 817.3 | 862.5 | 952 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| rowRanks | 0.9607 | 1.131 | 1.085 | 1.117 | 1.163 | 0.92 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805147 43.0 1442291 77.1 1442291 77.1
Vcells 12397152 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805141 43.0 1442291 77.1 1442291 77.1
Vcells 12407195 94.7 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 0.3511 | 0.4217 | 0.4466 | 0.4302 | 0.4693 | 1.164 |
| apply+rank | 56.5898 | 62.7835 | 71.7817 | 69.7821 | 79.0790 | 96.098 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.00 |
| apply+rank | 161.2 | 148.9 | 160.7 | 162.2 | 168.5 | 82.58 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 0.3064 | 0.313 | 0.3898 | 0.3653 | 0.4238 | 0.8196 |
| apply+rank | 56.2872 | 63.234 | 72.5931 | 70.1948 | 77.5813 | 213.3468 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.0 | 1 | 1.0 | 1.0 | 1 | 1.0 |
| apply+rank | 183.7 | 202 | 186.2 | 192.1 | 183 | 260.3 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+10x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 306.4 | 313.0 | 389.8 | 365.3 | 423.8 | 819.6 |
| 1 | colRanks | 351.1 | 421.7 | 446.6 | 430.2 | 469.3 | 1163.7 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
| 1 | colRanks | 1.146 | 1.347 | 1.146 | 1.178 | 1.107 | 1.42 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805182 43.1 1442291 77.1 1442291 77.1
Vcells 12398076 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805176 43.1 1442291 77.1 1442291 77.1
Vcells 12498119 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 4.919 | 4.956 | 5.697 | 5.231 | 6.466 | 9.23 |
| apply+rank | 69.764 | 81.853 | 93.062 | 90.987 | 104.885 | 135.71 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.00 | 1.00 | 1.00 | 1.0 | 1.00 | 1.0 |
| apply+rank | 14.18 | 16.52 | 16.34 | 17.4 | 16.22 | 14.7 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 5.028 | 5.054 | 5.356 | 5.069 | 5.436 | 6.513 |
| apply+rank | 69.930 | 80.867 | 90.392 | 88.045 | 95.610 | 239.730 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.00 | 1 | 1.00 | 1.00 | 1.00 | 1.00 |
| apply+rank | 13.91 | 16 | 16.88 | 17.37 | 17.59 | 36.81 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+100x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 5.028 | 5.054 | 5.356 | 5.069 | 5.436 | 6.513 |
| 1 | colRanks | 4.919 | 4.956 | 5.697 | 5.231 | 6.466 | 9.230 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.0000 | 1.0000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | colRanks | 0.9783 | 0.9806 | 1.064 | 1.032 | 1.189 | 1.417 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805219 43.1 1442291 77.1 1442291 77.1
Vcells 12398101 94.6 35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 805213 43.1 1442291 77.1 1442291 77.1
Vcells 12498144 95.4 35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")Table: Benchmarking of colRanks() and apply+rank() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 6.608 | 7.098 | 7.898 | 7.838 | 8.574 | 11.36 |
| apply+rank | 20.612 | 26.252 | 28.988 | 30.054 | 30.827 | 39.66 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| colRanks | 1.000 | 1.000 | 1.00 | 1.000 | 1.000 | 1.000 |
| apply+rank | 3.119 | 3.699 | 3.67 | 3.835 | 3.595 | 3.492 |
| Table: Benchmarking of rowRanks() and apply+rank() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 6.623 | 6.664 | 7.701 | 7.201 | 8.491 | 19.56 |
| apply+rank | 20.811 | 22.743 | 26.504 | 25.474 | 30.661 | 40.62 |
| expr | min | lq | mean | median | uq | max |
|---|---|---|---|---|---|---|
| rowRanks | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| apply+rank | 3.142 | 3.413 | 3.442 | 3.538 | 3.611 | 2.077 |
| Figure: Benchmarking of colRanks() and apply+rank() on double+1000x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colRanks() and rowRanks() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 6.623 | 6.664 | 7.701 | 7.201 | 8.491 | 19.56 |
| 1 | colRanks | 6.608 | 7.098 | 7.898 | 7.838 | 8.574 | 11.36 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowRanks | 1.0000 | 1.000 | 1.000 | 1.000 | 1.00 | 1.0000 |
| 1 | colRanks | 0.9978 | 1.065 | 1.026 | 1.088 | 1.01 | 0.5808 |
| Figure: Benchmarking of colRanks() and rowRanks() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 BiocGenerics_0.13.6 splines_3.2.0
[4] MASS_7.3-39 munsell_0.4.2 lattice_0.20-30
[7] colorspace_1.2-4 R.cache_0.11.1-9000 multcomp_1.3-9
[10] stringr_0.6.2 plyr_1.8.1 tools_3.2.0
[13] parallel_3.2.0 grid_3.2.0 Biobase_2.27.2
[16] gtable_0.1.2 TH.data_1.0-6 survival_2.38-1
[19] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1
[22] formatR_1.0.3 base64enc_0.1-3 mime_0.2.1
[25] evaluate_0.5.7 labeling_0.3 sandwich_2.3-2
[28] scales_0.2.4 mvtnorm_1.0-2 zoo_1.7-12
[31] Cairo_1.5-6 proto_0.3-10 Total processing time was 2.02 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRanks')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:21:28 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)