Skip to content

colRowMins

hb edited this page Mar 3, 2015 · 2 revisions

matrixStats: Benchmark report


colMins() and rowMins() benchmarks

This report benchmark the performance of colMins() and rowMins() against alternative methods.

Alternative methods

  • apply() + min()
  • lapply() + pmin()
  • lapply() + pmin.int()

See also StackOverflow:colMins?.

Data type "integer"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 integer matrix

> X <- data[["10x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   657452 35.2    1168576  62.5  1168576  62.5
Vcells 12137829 92.7   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655366 35.1    1168576  62.5  1168576  62.5
Vcells 12131878 92.6   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0062 0.0096 0.0110 0.0102 0.0104 0.1263
4 lapply+pmin.int 0.0516 0.0562 0.0581 0.0570 0.0581 0.1301
3 lapply+pmin 0.0832 0.0874 0.0914 0.0885 0.0905 0.1967
2 apply+min 0.1043 0.1086 0.1114 0.1101 0.1122 0.1909
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 8.373 5.839 5.286 5.585 5.592 1.030
3 lapply+pmin 13.496 9.079 8.313 8.679 8.703 1.558
2 apply+min 16.933 11.279 10.135 10.792 10.795 1.512
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0027 0.0042 0.0082 0.0062 0.0071 0.1848
4 lapply+pmin.int 0.0231 0.0298 0.0391 0.0321 0.0556 0.0670
3 lapply+pmin 0.0431 0.0470 0.0615 0.0497 0.0866 0.0935
2 apply+min 0.0550 0.0602 0.0748 0.0631 0.1059 0.1332
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.00 1.0000
4 lapply+pmin.int 8.568 7.043 4.744 5.217 7.81 0.3625
3 lapply+pmin 15.993 11.087 7.460 8.060 12.16 0.5063
2 apply+min 20.419 14.222 9.079 10.247 14.86 0.7208
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x10 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowMins 2.696 4.236 8.239 6.161 7.122 184.8
1 colMins 6.161 9.625 10.995 10.202 10.395 126.3
expr min lq mean median uq max
2 rowMins 1.000 1.000 1.000 1.000 1.00 1.0000
1 colMins 2.285 2.272 1.335 1.656 1.46 0.6833
Figure: Benchmarking of colMins() and rowMins() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix

> X <- data[["100x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655473 35.1    1168576  62.5  1168576  62.5
Vcells 12133218 92.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655467 35.1    1168576  62.5  1168576  62.5
Vcells 12138325 92.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0246 0.0383 0.0506 0.0487 0.0599 0.1132
4 lapply+pmin.int 0.3622 0.6028 0.6400 0.6444 0.6970 1.3504
2 apply+min 0.4161 0.7085 0.9151 0.7886 0.8635 11.9982
3 lapply+pmin 0.4696 0.6246 0.7723 0.8288 0.8802 1.1202
expr min lq mean median uq max
1 colMins 1.00 1.00 1.00 1.00 1.00 1.000
4 lapply+pmin.int 14.70 15.74 12.65 13.23 11.64 11.932
2 apply+min 16.89 18.50 18.09 16.19 14.42 106.013
3 lapply+pmin 19.06 16.31 15.26 17.02 14.70 9.898
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0300 0.0470 0.0571 0.0539 0.0699 0.1055
4 lapply+pmin.int 0.4011 0.6629 0.6841 0.6975 0.7253 2.1869
2 apply+min 0.3977 0.5884 0.8893 0.8061 0.8702 12.4325
3 lapply+pmin 0.5039 0.5805 0.8195 0.8731 0.9077 2.1442
expr min lq mean median uq max
1 rowMins 1.00 1.00 1.00 1.00 1.00 1.00
4 lapply+pmin.int 13.36 14.11 11.97 12.94 10.38 20.73
2 apply+min 13.24 12.53 15.56 14.96 12.45 117.87
3 lapply+pmin 16.78 12.36 14.34 16.20 12.99 20.33
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x100 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 24.64 38.30 50.60 48.70 59.86 113.2
rowMins 30.03 46.97 57.15 53.89 69.87 105.5
expr min lq mean median uq max
colMins 1.000 1.000 1.000 1.000 1.000 1.000
rowMins 1.219 1.226 1.129 1.107 1.167 0.932
Figure: Benchmarking of colMins() and rowMins() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix

> X <- data[["1000x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655508 35.1    1168576  62.5  1168576  62.5
Vcells 12133706 92.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655502 35.1    1168576  62.5  1168576  62.5
Vcells 12138813 92.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0181 0.0329 0.0457 0.0470 0.0581 0.0678
2 apply+min 0.2364 0.4127 0.5263 0.4941 0.5366 3.8634
4 lapply+pmin.int 2.0680 3.1077 3.3700 3.4894 3.8203 7.3788
3 lapply+pmin 2.8814 4.7134 5.1891 5.3114 5.8492 9.2304
expr min lq mean median uq max
1 colMins 1.00 1.00 1.00 1.00 1.000 1.00
2 apply+min 13.06 12.54 11.52 10.52 9.232 57.02
4 lapply+pmin.int 114.29 94.42 73.79 74.30 65.721 108.91
3 lapply+pmin 159.25 143.20 113.62 113.09 100.624 136.24
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0362 0.0566 0.0661 0.0654 0.0781 0.0959
2 apply+min 0.2367 0.4109 0.5043 0.4887 0.5676 1.2603
4 lapply+pmin.int 1.9094 2.1394 3.2388 3.3553 3.6782 10.5608
3 lapply+pmin 2.8698 4.2127 5.6684 5.0835 5.4690 67.6880
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.00
2 apply+min 6.543 7.262 7.631 7.468 7.263 13.15
4 lapply+pmin.int 52.766 37.806 49.015 51.270 47.069 110.18
3 lapply+pmin 79.308 74.445 85.783 77.678 69.984 706.16
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x10 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 18.09 32.91 45.67 46.97 58.13 67.75
rowMins 36.19 56.59 66.08 65.44 78.15 95.85
expr min lq mean median uq max
colMins 1 1.000 1.000 1.000 1.000 1.000
rowMins 2 1.719 1.447 1.393 1.344 1.415
Figure: Benchmarking of colMins() and rowMins() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix

> X <- data[["10x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655550 35.1    1168576  62.5  1168576  62.5
Vcells 12134396 92.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655544 35.1    1168576  62.5  1168576  62.5
Vcells 12139503 92.7   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0539 0.0616 0.0739 0.0747 0.0824 0.1201
4 lapply+pmin.int 0.2267 0.2366 0.2919 0.2652 0.3424 0.4431
3 lapply+pmin 0.2483 0.2589 0.3232 0.2955 0.3763 0.4874
2 apply+min 1.9413 2.1344 2.9921 2.9676 3.6507 7.0986
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 4.207 3.841 3.949 3.551 4.157 3.689
3 lapply+pmin 4.607 4.203 4.372 3.956 4.568 4.058
2 apply+min 36.021 34.653 40.469 39.737 44.315 59.102
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0581 0.0730 0.0855 0.0882 0.0962 0.1032
4 lapply+pmin.int 0.3876 0.4233 0.4459 0.4311 0.4469 1.5494
3 lapply+pmin 0.4288 0.4573 0.4815 0.4700 0.4877 1.3508
2 apply+min 3.3660 3.5418 4.2500 3.6241 3.7377 44.0125
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.00
4 lapply+pmin.int 6.669 5.802 5.216 4.891 4.644 15.02
3 lapply+pmin 7.377 6.269 5.632 5.332 5.068 13.09
2 apply+min 57.906 48.551 49.710 41.111 38.838 426.61
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+10x1000 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 53.89 61.59 73.94 74.68 82.38 120.1
rowMins 58.13 72.95 85.50 88.16 96.24 103.2
expr min lq mean median uq max
colMins 1.000 1.000 1.000 1.00 1.000 1.000
rowMins 1.079 1.184 1.156 1.18 1.168 0.859
Figure: Benchmarking of colMins() and rowMins() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix

> X <- data[["100x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655583 35.1    1168576  62.5  1168576  62.5
Vcells 12134853 92.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655577 35.1    1168576  62.5  1168576  62.5
Vcells 12184960 93.0   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.221 0.2766 0.3471 0.3257 0.3528 3.235
4 lapply+pmin.int 2.054 3.0619 3.4148 3.7483 3.9181 4.337
3 lapply+pmin 2.192 3.0742 3.7925 3.9879 4.1687 17.319
2 apply+min 3.616 4.8381 6.2682 6.4539 6.9376 19.813
expr min lq mean median uq max
1 colMins 1.000 1.00 1.000 1.00 1.00 1.000
4 lapply+pmin.int 9.296 11.07 9.838 11.51 11.11 1.341
3 lapply+pmin 9.920 11.11 10.927 12.25 11.82 5.354
2 apply+min 16.364 17.49 18.059 19.82 19.66 6.125
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.2737 0.3467 0.3881 0.3811 0.4294 0.5232
4 lapply+pmin.int 2.4160 3.0286 3.6768 3.8026 3.9254 16.4957
3 lapply+pmin 2.5519 3.7822 3.9756 4.0316 4.1800 17.2432
2 apply+min 3.8530 6.6281 7.4773 7.0289 7.5060 32.6372
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.00
4 lapply+pmin.int 8.827 8.737 9.474 9.978 9.141 31.53
3 lapply+pmin 9.323 10.911 10.244 10.579 9.734 32.96
2 apply+min 14.077 19.120 19.267 18.443 17.480 62.39
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+100x1000 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 221.0 276.6 347.1 325.7 352.8 3234.8
rowMins 273.7 346.7 388.1 381.1 429.4 523.2
expr min lq mean median uq max
colMins 1.000 1.000 1.000 1.00 1.000 1.0000
rowMins 1.239 1.253 1.118 1.17 1.217 0.1617
Figure: Benchmarking of colMins() and rowMins() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix

> X <- data[["1000x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655618 35.1    1168576  62.5  1168576  62.5
Vcells 12135397 92.6   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655612 35.1    1168576  62.5  1168576  62.5
Vcells 12185504 93.0   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.1497 0.1963 0.2475 0.2604 0.2822 0.390
2 apply+min 2.0195 2.1523 3.1422 3.1547 3.7689 4.508
4 lapply+pmin.int 4.0235 4.9024 6.3955 6.7523 7.0052 16.811
3 lapply+pmin 5.0972 6.7398 8.6340 8.5308 8.8566 34.428
expr min lq mean median uq max
1 colMins 1.00 1.00 1.00 1.00 1.00 1.00
2 apply+min 13.49 10.96 12.70 12.11 13.36 11.56
4 lapply+pmin.int 26.87 24.97 25.84 25.93 24.83 43.11
3 lapply+pmin 34.04 34.33 34.88 32.76 31.39 88.29
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.2267 0.2635 0.2854 0.2745 0.2897 0.4596
2 apply+min 2.1111 3.0076 3.4112 3.1520 3.9537 10.2521
4 lapply+pmin.int 4.0039 4.2514 5.5956 4.4822 6.6805 18.4520
3 lapply+pmin 4.9786 5.3768 6.7722 5.7978 8.2282 19.1942
expr min lq mean median uq max
1 rowMins 1.000 1.00 1.00 1.00 1.00 1.00
2 apply+min 9.311 11.41 11.95 11.48 13.65 22.30
4 lapply+pmin.int 17.659 16.13 19.61 16.33 23.06 40.14
3 lapply+pmin 21.957 20.41 23.73 21.12 28.40 41.76
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on integer+1000x100 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 149.7 196.3 247.5 260.4 282.2 390.0
rowMins 226.7 263.5 285.4 274.5 289.7 459.6
expr min lq mean median uq max
colMins 1.000 1.000 1.000 1.000 1.000 1.000
rowMins 1.514 1.342 1.153 1.054 1.027 1.179
Figure: Benchmarking of colMins() and rowMins() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type "double"

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), naProb = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         X <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         X <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(X) <- mode
+     if (naProb > 0) 
+         X[sample(n, size = naProb * n)] <- NA
+     dim(X) <- c(nrow, ncol)
+     X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 double matrix

> X <- data[["10x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655668 35.1    1168576  62.5  1168576  62.5
Vcells 12251116 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655653 35.1    1168576  62.5  1168576  62.5
Vcells 12251308 93.5   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0031 0.0046 0.0058 0.0058 0.0065 0.0200
4 lapply+pmin.int 0.0281 0.0304 0.0320 0.0316 0.0339 0.0373
3 lapply+pmin 0.0420 0.0466 0.0502 0.0489 0.0510 0.1332
2 apply+min 0.0577 0.0608 0.0647 0.0635 0.0662 0.1417
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 9.124 6.583 5.508 5.465 5.176 1.865
3 lapply+pmin 13.624 10.082 8.649 8.464 7.793 6.653
2 apply+min 18.748 13.165 11.134 10.997 10.117 7.077
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0031 0.0039 0.0062 0.0058 0.0069 0.0593
4 lapply+pmin.int 0.0273 0.0308 0.0341 0.0321 0.0339 0.1205
3 lapply+pmin 0.0431 0.0472 0.0498 0.0489 0.0516 0.0959
2 apply+min 0.0566 0.0612 0.0641 0.0631 0.0654 0.1420
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 8.874 7.997 5.468 5.566 4.888 2.033
3 lapply+pmin 13.998 12.246 7.971 8.466 7.443 1.617
2 apply+min 18.373 15.894 10.272 10.932 9.443 2.396
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x10 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowMins 3.08 3.851 6.245 5.775 6.931 59.28
1 colMins 3.08 4.620 5.810 5.776 6.545 20.02
expr min lq mean median uq max
2 rowMins 1 1.0 1.0000 1 1.0000 1.0000
1 colMins 1 1.2 0.9303 1 0.9444 0.3377
Figure: Benchmarking of colMins() and rowMins() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix

> X <- data[["100x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655689 35.1    1168576  62.5  1168576  62.5
Vcells 12251904 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655683 35.1    1168576  62.5  1168576  62.5
Vcells 12262011 93.6   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0393 0.0593 0.0763 0.0776 0.0878 0.2479
4 lapply+pmin.int 0.4311 0.4916 0.6419 0.6968 0.7174 0.8504
2 apply+min 0.4235 0.5443 0.8142 0.7509 0.8321 11.6872
3 lapply+pmin 0.5270 0.5974 0.8020 0.8636 0.8919 1.2103
expr min lq mean median uq max
1 colMins 1.00 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 10.98 8.292 8.412 8.983 8.173 3.430
2 apply+min 10.78 9.182 10.671 9.680 9.480 47.143
3 lapply+pmin 13.42 10.078 10.511 11.134 10.162 4.882
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0427 0.0679 0.0798 0.0795 0.0939 0.1047
4 lapply+pmin.int 0.4627 0.7305 0.6951 0.7451 0.7711 0.8246
2 apply+min 0.4131 0.4839 0.8004 0.7659 0.8504 10.6825
3 lapply+pmin 0.5578 0.5834 0.8222 0.9110 0.9406 1.1506
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 10.829 10.751 8.707 9.373 8.209 7.875
2 apply+min 9.666 7.122 10.025 9.634 9.053 102.021
3 lapply+pmin 13.054 8.586 10.299 11.460 10.014 10.989
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x100 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 39.27 59.28 76.30 77.57 87.77 247.9
rowMins 42.73 67.95 79.83 79.49 93.93 104.7
expr min lq mean median uq max
colMins 1.000 1.000 1.000 1.000 1.00 1.0000
rowMins 1.088 1.146 1.046 1.025 1.07 0.4224
Figure: Benchmarking of colMins() and rowMins() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix

> X <- data[["1000x10"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655715 35.1    1168576  62.5  1168576  62.5
Vcells 12252822 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655718 35.1    1168576  62.5  1168576  62.5
Vcells 12262944 93.6   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0354 0.0549 0.0676 0.0679 0.0835 0.0982
2 apply+min 0.2552 0.3569 0.4184 0.4129 0.4997 0.7087
4 lapply+pmin.int 2.2443 2.3773 3.1566 2.6306 3.7127 8.1183
3 lapply+pmin 3.1043 3.3972 4.3337 3.6086 5.3497 10.8145
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.00
2 apply+min 7.207 6.505 6.185 6.076 5.981 7.22
4 lapply+pmin.int 63.369 43.336 46.667 38.716 44.444 82.70
3 lapply+pmin 87.652 61.929 64.069 53.110 64.041 110.17
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0404 0.0464 0.0672 0.0708 0.0762 0.1028
2 apply+min 0.2521 0.3532 0.4205 0.4202 0.4639 0.6113
4 lapply+pmin.int 2.0476 2.1904 2.6553 2.2645 3.2981 7.1324
3 lapply+pmin 2.9911 3.1845 4.1502 3.3037 5.0650 15.3643
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.000
2 apply+min 6.238 7.614 6.254 5.932 6.086 5.947
4 lapply+pmin.int 50.656 47.219 39.492 31.970 43.270 69.392
3 lapply+pmin 73.999 68.651 61.725 46.641 66.451 149.481
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x10 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 35.42 54.86 67.64 67.95 83.54 98.16
rowMins 40.42 46.39 67.24 70.83 76.22 102.78
expr min lq mean median uq max
colMins 1.000 1.0000 1.000 1.000 1.0000 1.000
rowMins 1.141 0.8456 0.994 1.042 0.9124 1.047
Figure: Benchmarking of colMins() and rowMins() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix

> X <- data[["10x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655766 35.1    1168576  62.5  1168576  62.5
Vcells 12252867 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655760 35.1    1168576  62.5  1168576  62.5
Vcells 12262974 93.6   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.0658 0.0914 0.1022 0.1009 0.1172 0.1578
4 lapply+pmin.int 0.2849 0.3016 0.3859 0.4196 0.4371 0.4835
3 lapply+pmin 0.3006 0.3411 0.4494 0.4587 0.4833 2.1804
2 apply+min 2.0456 2.7482 3.6310 3.7620 4.0547 7.9782
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 4.327 3.299 3.777 4.160 3.729 3.063
3 lapply+pmin 4.567 3.731 4.398 4.548 4.123 13.815
2 apply+min 31.076 30.059 35.532 37.299 34.591 50.548
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.0639 0.0843 0.0985 0.0993 0.1155 0.1351
4 lapply+pmin.int 0.3234 0.3443 0.4455 0.4868 0.5029 0.6860
3 lapply+pmin 0.3430 0.3703 0.4596 0.5149 0.5416 0.5747
2 apply+min 2.0730 2.2058 3.1868 3.5198 3.8284 7.4816
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 5.060 4.084 4.524 4.901 4.355 5.077
3 lapply+pmin 5.367 4.393 4.667 5.184 4.690 4.253
2 apply+min 32.439 26.164 32.360 35.440 33.150 55.370
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+10x1000 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowMins 63.90 84.31 98.48 99.32 115.5 135.1
1 colMins 65.83 91.43 102.19 100.86 117.2 157.8
expr min lq mean median uq max
2 rowMins 1.00 1.000 1.000 1.000 1.000 1.000
1 colMins 1.03 1.085 1.038 1.016 1.015 1.168
Figure: Benchmarking of colMins() and rowMins() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix

> X <- data[["100x1000"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655799 35.1    1168576  62.5  1168576  62.5
Vcells 12253985 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655793 35.1    1168576  62.5  1168576  62.5
Vcells 12354092 94.3   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.3803 0.5996 0.6717 0.6764 0.6979 2.208
4 lapply+pmin.int 2.8925 3.8638 4.4952 4.7116 5.0256 7.877
3 lapply+pmin 3.0203 4.7188 5.2304 5.1565 5.3218 19.556
2 apply+min 3.8934 5.4810 6.9604 6.9871 7.3994 22.820
expr min lq mean median uq max
1 colMins 1.000 1.000 1.000 1.000 1.000 1.000
4 lapply+pmin.int 7.605 6.444 6.692 6.966 7.201 3.568
3 lapply+pmin 7.941 7.870 7.787 7.624 7.625 8.858
2 apply+min 10.237 9.142 10.363 10.330 10.602 10.336
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.4131 0.6596 0.686 0.7185 0.7376 1.124
4 lapply+pmin.int 3.0954 4.6239 4.682 4.6999 4.7848 18.997
3 lapply+pmin 3.1793 4.7567 4.839 4.9186 5.0002 15.284
2 apply+min 4.1367 7.2660 7.810 7.7243 8.4047 23.581
expr min lq mean median uq max
1 rowMins 1.000 1.000 1.000 1.000 1.000 1.00
4 lapply+pmin.int 7.494 7.010 6.825 6.541 6.487 16.91
3 lapply+pmin 7.697 7.211 7.054 6.845 6.779 13.60
2 apply+min 10.015 11.015 11.385 10.750 11.395 20.99
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+100x1000 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
colMins 380.3 599.6 671.7 676.4 697.9 2208
rowMins 413.1 659.6 686.0 718.5 737.6 1124
expr min lq mean median uq max
colMins 1.000 1.0 1.000 1.000 1.000 1.000
rowMins 1.086 1.1 1.021 1.062 1.057 0.509
Figure: Benchmarking of colMins() and rowMins() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix

> X <- data[["1000x100"]]
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655834 35.1    1168576  62.5  1168576  62.5
Vcells 12254008 93.5   35610798 271.7 68120027 519.8
> colStats <- microbenchmark(colMins = colMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 2L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(nrow(X)), function(i) X[i, 
+     ])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(nrow(X)), function(i) X[i, ])), unit = "ms")
> X <- t(X)
> gc()
           used (Mb) gc trigger  (Mb) max used  (Mb)
Ncells   655828 35.1    1168576  62.5  1168576  62.5
Vcells 12354115 94.3   35610798 271.7 68120027 519.8
> rowStats <- microbenchmark(rowMins = rowMins(X, na.rm = FALSE), `apply+min` = apply(X, MARGIN = 1L, 
+     FUN = min, na.rm = FALSE), `lapply+pmin` = do.call(pmin, lapply(seq_len(ncol(X)), function(i) X[, 
+     i])), `lapply+pmin.int` = do.call(pmin.int, lapply(seq_len(ncol(X)), function(i) X[, i])), unit = "ms")

Table: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
1 colMins 0.3349 0.4369 0.5656 0.6015 0.6563 0.9501
2 apply+min 2.2170 3.2675 3.6508 3.7656 4.1585 5.7058
4 lapply+pmin.int 4.6610 5.2284 7.4279 7.6356 7.9836 23.7332
3 lapply+pmin 5.7481 6.7380 9.2377 9.3430 9.7035 26.7443
expr min lq mean median uq max
1 colMins 1.00 1.000 1.000 1.000 1.000 1.000
2 apply+min 6.62 7.478 6.455 6.261 6.336 6.006
4 lapply+pmin.int 13.92 11.966 13.133 12.694 12.164 24.980
3 lapply+pmin 17.16 15.421 16.333 15.533 14.784 28.150
Table: Benchmarking of rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr min lq mean median uq max
1 rowMins 0.3599 0.4188 0.5541 0.5711 0.6927 0.8176
2 apply+min 2.4348 4.3559 4.9334 4.8645 5.6482 11.7107
4 lapply+pmin.int 4.7372 5.1241 7.3061 7.3164 7.9454 20.2859
3 lapply+pmin 5.8690 6.1843 8.1598 7.7331 9.4395 21.6017
expr min lq mean median uq max
1 rowMins 1.000 1.00 1.000 1.000 1.000 1.00
2 apply+min 6.765 10.40 8.904 8.518 8.154 14.32
4 lapply+pmin.int 13.162 12.23 13.186 12.812 11.470 24.81
3 lapply+pmin 16.306 14.77 14.727 13.541 13.627 26.42
Figure: Benchmarking of colMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on double+1000x100 data as well as rowMins(), apply+min(), lapply+pmin() and lapply+pmin.int() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMins() and rowMins() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

expr min lq mean median uq max
2 rowMins 359.9 418.8 554.1 571.1 692.7 817.6
1 colMins 334.9 436.9 565.6 601.5 656.3 950.1
expr min lq mean median uq max
2 rowMins 1.0000 1.000 1.000 1.000 1.0000 1.000
1 colMins 0.9305 1.043 1.021 1.053 0.9475 1.162
Figure: Benchmarking of colMins() and rowMins() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] markdown_0.7.7          microbenchmark_1.4-2    matrixStats_0.14.0-9000
[4] ggplot2_1.0.0           knitr_1.9.3             R.devices_2.13.0       
[7] R.utils_2.0.0           R.oo_1.19.0             R.methodsS3_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_0.11.4         splines_3.2.0       MASS_7.3-39        
 [4] munsell_0.4.2       lattice_0.20-30     colorspace_1.2-4   
 [7] R.cache_0.11.1-9000 multcomp_1.3-9      stringr_0.6.2      
[10] plyr_1.8.1          tools_3.2.0         grid_3.2.0         
[13] gtable_0.1.2        TH.data_1.0-6       survival_2.38-1    
[16] digest_0.6.8        R.rsp_0.20.0        reshape2_1.4.1     
[19] formatR_1.0.3       base64enc_0.1-3     mime_0.2.1         
[22] evaluate_0.5.7      labeling_0.3        sandwich_2.3-2     
[25] scales_0.2.4        mvtnorm_1.0-2       zoo_1.7-12         
[28] Cairo_1.5-6         proto_0.3-10       

Total processing time was 1.01 mins.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colMins')

Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:10:30 (-0800 UTC). Powered by RSP.

<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>

[Benchmark reports](Benchmark reports)

Clone this wiki locally