-
Notifications
You must be signed in to change notification settings - Fork 0
madDiff
matrixStats: Benchmark report
This report benchmark the performance of madDiff() against alternative methods.
- N/A
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (naProb > 0)
+ x[sample(n, size = naProb * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n=1000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on integer+n=1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 0.0320 | 0.0375 | 0.0541 | 0.0549 | 0.0602 | 0.1548 |
| 1 | madDiff | 0.1136 | 0.1272 | 0.2120 | 0.1879 | 0.2019 | 2.0433 |
| 2 | mad | 0.1632 | 0.1698 | 0.2458 | 0.2597 | 0.2820 | 0.5586 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 3.554 | 3.390 | 3.917 | 3.425 | 3.351 | 13.204 |
| 2 | mad | 5.108 | 4.523 | 4.543 | 4.733 | 4.680 | 3.609 |
| Figure: Benchmarking of madDiff(), mad() and diff() on integer+n=1000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=10000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on integer+n=10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 0.2086 | 0.2131 | 0.2315 | 0.2171 | 0.2258 | 0.4215 |
| 1 | madDiff | 0.4804 | 0.4874 | 0.5105 | 0.4933 | 0.5018 | 0.8003 |
| 2 | mad | 0.8327 | 0.8404 | 0.8803 | 0.8450 | 0.8571 | 1.5783 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 2.303 | 2.287 | 2.205 | 2.272 | 2.223 | 1.899 |
| 2 | mad | 3.991 | 3.944 | 3.802 | 3.892 | 3.796 | 3.744 |
| Figure: Benchmarking of madDiff(), mad() and diff() on integer+n=10000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=100000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on integer+n=100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.981 | 2.458 | 3.103 | 2.813 | 3.283 | 24.41 |
| 1 | madDiff | 3.914 | 4.623 | 5.566 | 5.062 | 5.952 | 23.02 |
| 2 | mad | 7.120 | 8.308 | 9.807 | 9.266 | 10.783 | 26.76 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 1.976 | 1.881 | 1.794 | 1.800 | 1.813 | 0.943 |
| 2 | mad | 3.595 | 3.380 | 3.160 | 3.295 | 3.285 | 1.096 |
| Figure: Benchmarking of madDiff(), mad() and diff() on integer+n=100000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=1000000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on integer+n=1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 20.45 | 25.31 | 30.39 | 27.47 | 34.82 | 58.20 |
| 1 | madDiff | 50.91 | 58.14 | 67.17 | 65.20 | 73.52 | 96.57 |
| 2 | mad | 78.32 | 88.83 | 101.15 | 97.60 | 110.25 | 151.38 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 2.489 | 2.297 | 2.210 | 2.374 | 2.111 | 1.659 |
| 2 | mad | 3.829 | 3.510 | 3.328 | 3.554 | 3.166 | 2.601 |
| Figure: Benchmarking of madDiff(), mad() and diff() on integer+n=1000000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (naProb > 0)
+ x[sample(n, size = naProb * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n=%d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]> x <- data[["n=1000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on double+n=1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 0.0250 | 0.0293 | 0.0345 | 0.0312 | 0.0335 | 0.0793 |
| 1 | madDiff | 0.1621 | 0.1663 | 0.1898 | 0.1702 | 0.1875 | 0.4415 |
| 2 | mad | 0.1886 | 0.1921 | 0.2247 | 0.1948 | 0.2533 | 0.3707 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 6.477 | 5.684 | 5.497 | 5.457 | 5.598 | 5.568 |
| 2 | mad | 7.538 | 6.566 | 6.508 | 6.247 | 7.563 | 4.675 |
| Figure: Benchmarking of madDiff(), mad() and diff() on double+n=1000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=10000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on double+n=10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 0.1544 | 0.1821 | 0.2385 | 0.2466 | 0.2762 | 0.3391 |
| 2 | mad | 1.0725 | 1.4882 | 1.5265 | 1.5887 | 1.6630 | 2.1692 |
| 1 | madDiff | 1.2157 | 1.2800 | 1.7161 | 1.7614 | 1.8509 | 6.5377 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2 | mad | 6.948 | 8.173 | 6.399 | 6.443 | 6.021 | 6.396 |
| 1 | madDiff | 7.875 | 7.030 | 7.194 | 7.144 | 6.701 | 19.277 |
| Figure: Benchmarking of madDiff(), mad() and diff() on double+n=10000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=100000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on double+n=100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.554 | 2.167 | 2.905 | 2.635 | 3.408 | 19.64 |
| 1 | madDiff | 8.938 | 12.120 | 14.145 | 13.881 | 15.037 | 34.53 |
| 2 | mad | 11.645 | 14.376 | 17.339 | 17.292 | 18.811 | 48.10 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1 | madDiff | 5.753 | 5.594 | 4.870 | 5.268 | 4.413 | 1.758 |
| 2 | mad | 7.495 | 6.636 | 5.969 | 6.562 | 5.520 | 2.449 |
| Figure: Benchmarking of madDiff(), mad() and diff() on double+n=100000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
> x <- data[["n=1000000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")Table: Benchmarking of madDiff(), mad() and diff() on double+n=1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 23.46 | 27.85 | 33.77 | 30.45 | 33.92 | 73.98 |
| 2 | mad | 95.18 | 106.58 | 121.81 | 114.99 | 126.52 | 417.49 |
| 1 | madDiff | 98.11 | 110.41 | 124.72 | 120.01 | 131.82 | 405.31 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | diff | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 2 | mad | 4.058 | 3.827 | 3.607 | 3.776 | 3.730 | 5.643 |
| 1 | madDiff | 4.183 | 3.965 | 3.693 | 3.941 | 3.886 | 5.478 |
| Figure: Benchmarking of madDiff(), mad() and diff() on double+n=1000000 data. Outliers are displayed as crosses. Times are in milliseconds. | |||||||
![]() |
R Under development (unstable) (2015-02-27 r67909)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.14.0-9000
[4] ggplot2_1.0.0 knitr_1.9.3 R.devices_2.13.0
[7] R.utils_2.0.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.11.4 GenomeInfoDb_1.3.13 formatR_1.0.3
[4] plyr_1.8.1 base64enc_0.1-3 tools_3.2.0
[7] digest_0.6.8 RSQLite_1.0.0 annotate_1.45.2
[10] evaluate_0.5.7 gtable_0.1.2 R.cache_0.11.1-9000
[13] lattice_0.20-30 DBI_0.3.1 parallel_3.2.0
[16] mvtnorm_1.0-2 proto_0.3-10 R.rsp_0.20.0
[19] genefilter_1.49.2 stringr_0.6.2 IRanges_2.1.41
[22] S4Vectors_0.5.21 stats4_3.2.0 grid_3.2.0
[25] Biobase_2.27.2 AnnotationDbi_1.29.17 XML_3.98-1.1
[28] survival_2.38-1 multcomp_1.3-9 TH.data_1.0-6
[31] reshape2_1.4.1 scales_0.2.4 MASS_7.3-39
[34] splines_3.2.0 BiocGenerics_0.13.6 xtable_1.8-0
[37] mime_0.2.1 colorspace_1.2-4 labeling_0.3
[40] sandwich_2.3-2 munsell_0.4.2 Cairo_1.5-6
[43] zoo_1.7-12 Total processing time was 1.09 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('madDiff')Copyright Henrik Bengtsson. Last updated on 2015-03-02 17:29:21 (-0800 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>[Benchmark reports](Benchmark reports)







