-
Notifications
You must be signed in to change notification settings - Fork 28.8k
[BACKPORT-2.1][SPARKR][DOCS] update R API doc for subset/extract #16748
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…rk Streaming ## What changes were proposed in this pull request? apache#15992 provided a solution to fix the bug, i.e. **receiver data can not be deserialized properly**. As zsxwing said, it is a critical bug, but we should not break APIs between maintenance releases. It may be a rational choice to close auto pick kryo serializer for Spark Streaming in the first step. I will continue apache#15992 to optimize the solution. ## How was this patch tested? existing ut Author: uncleGen <hustyugm@gmail.com> Closes apache#16052 from uncleGen/SPARK-18617. (cherry picked from commit 56c82ed) Signed-off-by: Reynold Xin <rxin@databricks.com>
…iscretizer and Bucketizer ## What changes were proposed in this pull request? added the new handleInvalid param for these transformers to Python to maintain API parity. ## How was this patch tested? existing tests testing is done with new doctests Author: Sandeep Singh <sandeep@techaddict.me> Closes apache#15817 from techaddict/SPARK-18366. (cherry picked from commit fe854f2) Signed-off-by: Nick Pentreath <nickp@za.ibm.com>
## What changes were proposed in this pull request? Fix a broadcasted variable leak occurring at each invocation of CostFun in L-BFGS. ## How was this patch tested? UTests + check that fixed fatal memory consumption on Criteo's use cases. This contribution is made on behalf of Criteo S.A. (http://labs.criteo.com/) under the terms of the Apache v2 License. Author: Anthony Truchet <a.truchet@criteo.com> Closes apache#16040 from AnthonyTruchet/SPARK-18612-lbfgs-cost-fun. (cherry picked from commit c5a64d7) Signed-off-by: Sean Owen <sowen@cloudera.com>
### What changes were proposed in this pull request? The `constraints` of an operator is the expressions that evaluate to `true` for all the rows produced. That means, the expression result should be neither `false` nor `unknown` (NULL). Thus, we can conclude that `IsNotNull` on all the constraints, which are generated by its own predicates or propagated from the children. The constraint can be a complex expression. For better usage of these constraints, we try to push down `IsNotNull` to the lowest-level expressions (i.e., `Attribute`). `IsNotNull` can be pushed through an expression when it is null intolerant. (When the input is NULL, the null-intolerant expression always evaluates to NULL.) Below is the existing code we have for `IsNotNull` pushdown. ```Scala private def scanNullIntolerantExpr(expr: Expression): Seq[Attribute] = expr match { case a: Attribute => Seq(a) case _: NullIntolerant | IsNotNull(_: NullIntolerant) => expr.children.flatMap(scanNullIntolerantExpr) case _ => Seq.empty[Attribute] } ``` **`IsNotNull` itself is not null-intolerant.** It converts `null` to `false`. If the expression does not include any `Not`-like expression, it works; otherwise, it could generate a wrong result. This PR is to fix the above function by removing the `IsNotNull` from the inference. After the fix, when a constraint has a `IsNotNull` expression, we infer new attribute-specific `IsNotNull` constraints if and only if `IsNotNull` appears in the root. Without the fix, the following test case will return empty. ```Scala val data = Seq[java.lang.Integer](1, null).toDF("key") data.filter("not key is not null").show() ``` Before the fix, the optimized plan is like ``` == Optimized Logical Plan == Project [value#1 AS key#3] +- Filter (isnotnull(value#1) && NOT isnotnull(value#1)) +- LocalRelation [value#1] ``` After the fix, the optimized plan is like ``` == Optimized Logical Plan == Project [value#1 AS key#3] +- Filter NOT isnotnull(value#1) +- LocalRelation [value#1] ``` ### How was this patch tested? Added a test Author: gatorsmile <gatorsmile@gmail.com> Closes apache#16067 from gatorsmile/isNotNull2. (cherry picked from commit 2eb093d) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
… fail ## What changes were proposed in this pull request? Spark SQL only has `StringType`, when reading hive table with varchar column, we will read that column as `StringType`. However, we still need to use varchar `ObjectInspector` to read varchar column in hive table, which means we need to know the actual column type at hive side. In Spark 2.1, after apache#14363 , we parse hive type string to catalyst type, which means the actual column type at hive side is erased. Then we may use string `ObjectInspector` to read varchar column and fail. This PR keeps the original hive column type string in the metadata of `StructField`, and use it when we convert it to a hive column. ## How was this patch tested? newly added regression test Author: Wenchen Fan <wenchen@databricks.com> Closes apache#16060 from cloud-fan/varchar. (cherry picked from commit 3f03c90) Signed-off-by: Reynold Xin <rxin@databricks.com>
## What changes were proposed in this pull request? Added missing semicolon in quick-start-guide java example code which wasn't compiling before. ## How was this patch tested? Locally by running and generating site for docs. You can see the last line contains ";" in the below snapshot.  Author: manishAtGit <manish@knoldus.com> Closes apache#16081 from manishatGit/fixed-quick-start-guide. (cherry picked from commit bc95ea0) Signed-off-by: Andrew Or <andrewor14@gmail.com>
…utors ## What changes were proposed in this pull request? The method `TaskSchedulerImpl.runningTasksByExecutors()` accesses the mutable `executorIdToRunningTaskIds` map without proper synchronization. In addition, as markhamstra pointed out in apache#15986, the signature's use of parentheses is a little odd given that this is a pure getter method. This patch fixes both issues. ## How was this patch tested? Covered by existing tests. Author: Josh Rosen <joshrosen@databricks.com> Closes apache#16073 from JoshRosen/runningTasksByExecutors-thread-safety. (cherry picked from commit c51c772) Signed-off-by: Andrew Or <andrewor14@gmail.com>
## What changes were proposed in this pull request? API review for 2.1, except ```LSH``` related classes which are still under development. ## How was this patch tested? Only doc changes, no new tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes apache#16009 from yanboliang/spark-18318. (cherry picked from commit 60022bf) Signed-off-by: Joseph K. Bradley <joseph@databricks.com>
## What changes were proposed in this pull request? For input object of non-flat type, we can't encode it to row if it's null, as Spark SQL doesn't allow the entire row to be null, only its columns can be null. That's the reason we forbid users to use top level null objects in apache#13469 However, if users wrap non-flat type with `Option`, then we may still encoder top level null object to row, which is not allowed. This PR fixes this case, and suggests users to wrap their type with `Tuple1` if they do wanna top level null objects. ## How was this patch tested? new test Author: Wenchen Fan <wenchen@databricks.com> Closes apache#15979 from cloud-fan/option. (cherry picked from commit f135b70) Signed-off-by: Cheng Lian <lian@databricks.com>
The problem exists because it's not possible to just concatenate encrypted partition data from different spill files; currently each partition would have its own initial vector to set up encryption, and the final merged file should contain a single initial vector for each merged partiton, otherwise iterating over each record becomes really hard. To fix that, UnsafeShuffleWriter now decrypts the partitions when merging, so that the merged file contains a single initial vector at the start of the partition data. Because it's not possible to do that using the fast transferTo path, when encryption is enabled UnsafeShuffleWriter will revert back to using file streams when merging. It may be possible to use a hybrid approach when using encryption, using an intermediate direct buffer when reading from files and encrypting the data, but that's better left for a separate patch. As part of the change I made DiskBlockObjectWriter take a SerializerManager instead of a "wrap stream" closure, since that makes it easier to test the code without having to mock SerializerManager functionality. Tested with newly added unit tests (UnsafeShuffleWriterSuite for the write side and ExternalAppendOnlyMapSuite for integration), and by running some apps that failed without the fix. Author: Marcelo Vanzin <vanzin@cloudera.com> Closes apache#15982 from vanzin/SPARK-18546. (cherry picked from commit 93e9d88) Signed-off-by: Marcelo Vanzin <vanzin@cloudera.com>
…erver ## What changes were proposed in this pull request? As `queryStatus` in StreamingQueryListener events was removed in apache#15954, parsing 2.0.2 structured streaming logs will throw the following errror: ``` [info] com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException: Unrecognized field "queryStatus" (class org.apache.spark.sql.streaming.StreamingQueryListener$QueryTerminatedEvent), not marked as ignorable (2 known properties: "id", "exception"]) [info] at [Source: {"Event":"org.apache.spark.sql.streaming.StreamingQueryListener$QueryTerminatedEvent","queryStatus":{"name":"query-1","id":1,"timestamp":1480491532753,"inputRate":0.0,"processingRate":0.0,"latency":null,"sourceStatuses":[{"description":"FileStreamSource[file:/Users/zsx/stream]","offsetDesc":"#0","inputRate":0.0,"processingRate":0.0,"triggerDetails":{"latency.getOffset.source":"1","triggerId":"1"}}],"sinkStatus":{"description":"FileSink[/Users/zsx/stream2]","offsetDesc":"[#0]"},"triggerDetails":{}},"exception":null}; line: 1, column: 521] (through reference chain: org.apache.spark.sql.streaming.QueryTerminatedEvent["queryStatus"]) [info] at com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException.from(UnrecognizedPropertyException.java:51) [info] at com.fasterxml.jackson.databind.DeserializationContext.reportUnknownProperty(DeserializationContext.java:839) [info] at com.fasterxml.jackson.databind.deser.std.StdDeserializer.handleUnknownProperty(StdDeserializer.java:1045) [info] at com.fasterxml.jackson.databind.deser.BeanDeserializerBase.handleUnknownProperty(BeanDeserializerBase.java:1352) [info] at com.fasterxml.jackson.databind.deser.BeanDeserializerBase.handleUnknownProperties(BeanDeserializerBase.java:1306) [info] at com.fasterxml.jackson.databind.deser.BeanDeserializer._deserializeUsingPropertyBased(BeanDeserializer.java:453) [info] at com.fasterxml.jackson.databind.deser.BeanDeserializerBase.deserializeFromObjectUsingNonDefault(BeanDeserializerBase.java:1099) ... ``` This PR just ignores such errors and adds a test to make sure we can read 2.0.2 logs. ## How was this patch tested? `query-event-logs-version-2.0.2.txt` has all types of events generated by Structured Streaming in Spark 2.0.2. `testQuietly("ReplayListenerBus should ignore broken event jsons generated in 2.0.2")` verified we can load them without any error. Author: Shixiong Zhu <shixiong@databricks.com> Closes apache#16085 from zsxwing/SPARK-18655. (cherry picked from commit c4979f6) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
…e. Receiver data should be deserialized properly ## What changes were proposed in this pull request? Fixed the potential SparkContext leak in `StreamingContextSuite.SPARK-18560 Receiver data should be deserialized properly` which was added in apache#16052. I also removed FakeByteArrayReceiver and used TestReceiver directly. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes apache#16091 from zsxwing/SPARK-18617-follow-up. (cherry picked from commit 0a81121) Signed-off-by: Reynold Xin <rxin@databricks.com>
…pport output original label. ## What changes were proposed in this pull request? Similar to SPARK-18401, as a classification algorithm, logistic regression should support output original label instead of supporting index label. In this PR, original label output is supported and test cases are modified and added. Document is also modified. ## How was this patch tested? Unit tests. Author: wm624@hotmail.com <wm624@hotmail.com> Closes apache#15910 from wangmiao1981/audit. (cherry picked from commit 2eb6764) Signed-off-by: Yanbo Liang <ybliang8@gmail.com>
…e cases ## What changes were proposed in this pull request? Due to confusion between URI vs paths, in certain cases we escape partition values too many times, which causes some Hive client operations to fail or write data to the wrong location. This PR fixes at least some of these cases. To my understanding this is how values, filesystem paths, and URIs interact. - Hive stores raw (unescaped) partition values that are returned to you directly when you call listPartitions. - Internally, we convert these raw values to filesystem paths via `ExternalCatalogUtils.[un]escapePathName`. - In some circumstances we store URIs instead of filesystem paths. When a path is converted to a URI via `path.toURI`, the escaped partition values are further URI-encoded. This means that to get a path back from a URI, you must call `new Path(new URI(uriTxt))` in order to decode the URI-encoded string. - In `CatalogStorageFormat` we store URIs as strings. This makes it easy to forget to URI-decode the value before converting it into a path. - Finally, the Hive client itself uses mostly Paths for representing locations, and only URIs occasionally. In the future we should probably clean this up, perhaps by dropping use of URIs when unnecessary. We should also try fixing escaping for partition names as well as values, though names are unlikely to contain special characters. cc mallman cloud-fan yhuai ## How was this patch tested? Unit tests. Author: Eric Liang <ekl@databricks.com> Closes apache#16071 from ericl/spark-18635. (cherry picked from commit 88f559f) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…rk.sql.unsafe.enabled ## What changes were proposed in this pull request? `spark.sql.unsafe.enabled` is deprecated since 1.6. There still are codes in UI to check it. We should remove it and clean the codes. ## How was this patch tested? Changes to related existing unit test. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes apache#16095 from viirya/remove-deprecated-config-code. (cherry picked from commit dbf842b) Signed-off-by: Reynold Xin <rxin@databricks.com>
…ows Unrecognized option ## What changes were proposed in this pull request? spark-daemon.sh will lost single quotes around after apache#15338. as follows: ``` execute_command nice -n 0 bash /opt/cloudera/parcels/SPARK-2.1.0-cdh5.4.3.d20161129-21.04.38/lib/spark/bin/spark-submit --class org.apache.spark.sql.hive.thriftserver.HiveThriftServer2 --name Thrift JDBC/ODBC Server --conf spark.driver.extraJavaOptions=-XX:+UseG1GC -XX:-HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp ``` With this fix, as follows: ``` execute_command nice -n 0 bash /opt/cloudera/parcels/SPARK-2.1.0-cdh5.4.3.d20161129-21.04.38/lib/spark/bin/spark-submit --class org.apache.spark.sql.hive.thriftserver.HiveThriftServer2 --name 'Thrift JDBC/ODBC Server' --conf 'spark.driver.extraJavaOptions=-XX:+UseG1GC -XX:-HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp' ``` ## How was this patch tested? - Manual tests - Build the package and start-thriftserver.sh with `--conf 'spark.driver.extraJavaOptions=-XX:+UseG1GC -XX:-HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp'` Author: Yuming Wang <wgyumg@gmail.com> Closes apache#16079 from wangyum/SPARK-18645. (cherry picked from commit 2ab8551) Signed-off-by: Sean Owen <sowen@cloudera.com>
## What changes were proposed in this pull request? The current error message of USING join is quite confusing, for example: ``` scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1") df1: org.apache.spark.sql.DataFrame = [c1: int] scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2") df2: org.apache.spark.sql.DataFrame = [c2: int] scala> df1.join(df2, usingColumn = "c1") org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;; 'Join UsingJoin(Inner,List('c1)) :- Project [value#1 AS c1#3] : +- LocalRelation [value#1] +- Project [value#7 AS c2#9] +- LocalRelation [value#7] ``` after this PR, it becomes: ``` scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1") df1: org.apache.spark.sql.DataFrame = [c1: int] scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2") df2: org.apache.spark.sql.DataFrame = [c2: int] scala> df1.join(df2, usingColumn = "c1") org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2]; ``` ## How was this patch tested? updated tests Author: Wenchen Fan <wenchen@databricks.com> Closes apache#16100 from cloud-fan/natural. (cherry picked from commit e653484) Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request? In`JavaWrapper `'s destructor make Java Gateway dereference object in destructor, using `SparkContext._active_spark_context._gateway.detach` Fixing the copying parameter bug, by moving the `copy` method from `JavaModel` to `JavaParams` ## How was this patch tested? ```scala import random, string from pyspark.ml.feature import StringIndexer l = [(''.join(random.choice(string.ascii_uppercase) for _ in range(10)), ) for _ in range(int(7e5))] # 700000 random strings of 10 characters df = spark.createDataFrame(l, ['string']) for i in range(50): indexer = StringIndexer(inputCol='string', outputCol='index') indexer.fit(df) ``` * Before: would keep StringIndexer strong reference, causing GC issues and is halted midway After: garbage collection works as the object is dereferenced, and computation completes * Mem footprint tested using profiler * Added a parameter copy related test which was failing before. Author: Sandeep Singh <sandeep@techaddict.me> Author: jkbradley <joseph.kurata.bradley@gmail.com> Closes apache#15843 from techaddict/SPARK-18274. (cherry picked from commit 78bb7f8) Signed-off-by: Joseph K. Bradley <joseph@databricks.com>
…te. Receiver data should be deserialized properly ## What changes were proposed in this pull request? Avoid to create multiple threads to stop StreamingContext. Otherwise, the latch added in apache#16091 can be passed too early. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes apache#16105 from zsxwing/SPARK-18617-2. (cherry picked from commit 086b0c8) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
## What changes were proposed in this pull request? We current build 5 separate pip binary tar balls, doubling the release script runtime. It'd be better to build one, especially for use cases that are just using Spark locally. In the long run, it would make more sense to have Hadoop support be pluggable. ## How was this patch tested? N/A - this is a release build script that doesn't have any automated test coverage. We will know if it goes wrong when we prepare releases. Author: Reynold Xin <rxin@databricks.com> Closes apache#16072 from rxin/SPARK-18639. (cherry picked from commit 37e52f8) Signed-off-by: Reynold Xin <rxin@databricks.com>
…of the JDBC RDD generated sql statement ## What changes were proposed in this pull request? SQL query generated for the JDBC data source is not quoting columns in the predicate clause. When the source table has quoted column names, spark jdbc read fails with column not found error incorrectly. Error: org.h2.jdbc.JdbcSQLException: Column "ID" not found; Source SQL statement: SELECT "Name","Id" FROM TEST."mixedCaseCols" WHERE (Id < 1) This PR fixes by quoting column names in the generated SQL for predicate clause when filters are pushed down to the data source. Source SQL statement after the fix: SELECT "Name","Id" FROM TEST."mixedCaseCols" WHERE ("Id" < 1) ## How was this patch tested? Added new test case to the JdbcSuite Author: sureshthalamati <suresh.thalamati@gmail.com> Closes apache#15662 from sureshthalamati/filter_quoted_cols-SPARK-18141. (cherry picked from commit 70c5549) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
…DataFrameReader JDBC APIs ### What changes were proposed in this pull request? #### This PR is to backport apache#15975 to Branch 2.1 --- The following two `DataFrameReader` JDBC APIs ignore the user-specified parameters of parallelism degree. ```Scala def jdbc( url: String, table: String, columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int, connectionProperties: Properties): DataFrame ``` ```Scala def jdbc( url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame ``` This PR is to fix the issues. To verify the behavior correctness, we improve the plan output of `EXPLAIN` command by adding `numPartitions` in the `JDBCRelation` node. Before the fix, ``` == Physical Plan == *Scan JDBCRelation(TEST.PEOPLE) [NAME#1896,THEID#1897] ReadSchema: struct<NAME:string,THEID:int> ``` After the fix, ``` == Physical Plan == *Scan JDBCRelation(TEST.PEOPLE) [numPartitions=3] [NAME#1896,THEID#1897] ReadSchema: struct<NAME:string,THEID:int> ``` ### How was this patch tested? Added the verification logics on all the test cases for JDBC concurrent fetching. Author: gatorsmile <gatorsmile@gmail.com> Closes apache#16111 from gatorsmile/jdbcFix2.1.
## What changes were proposed in this pull request? This PR makes `ExpressionEncoder.serializer.nullable` for flat encoder for a primitive type `false`. Since it is `true` for now, it is too conservative. While `ExpressionEncoder.schema` has correct information (e.g. `<IntegerType, false>`), `serializer.head.nullable` of `ExpressionEncoder`, which got from `encoderFor[T]`, is always false. It is too conservative. This is accomplished by checking whether a type is one of primitive types. If it is `true`, `nullable` should be `false`. ## How was this patch tested? Added new tests for encoder and dataframe Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes apache#15780 from kiszk/SPARK-18284. (cherry picked from commit 38b9e69) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…erde table ## What changes were proposed in this pull request? In Spark 2.1, we make Hive serde tables case-preserving by putting the table metadata in table properties, like what we did for data source table. However, we should not put table provider, as it will break forward compatibility. e.g. if we create a Hive serde table with Spark 2.1, using `sql("create table test stored as parquet as select 1")`, we will fail to read it with Spark 2.0, as Spark 2.0 mistakenly treat it as data source table because there is a `provider` entry in table properties. Logically Hive serde table's provider is always hive, we don't need to store it in table properties, this PR removes it. ## How was this patch tested? manually test the forward compatibility issue. Author: Wenchen Fan <wenchen@databricks.com> Closes apache#16080 from cloud-fan/hive. (cherry picked from commit a5f02b0) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…nary columns due to PARQUET-686 This PR targets to both master and branch-2.1. ## What changes were proposed in this pull request? Due to PARQUET-686, Parquet doesn't do string comparison correctly while doing filter push-down for string columns. This PR disables filter push-down for both string and binary columns to work around this issue. Binary columns are also affected because some Parquet data models (like Hive) may store string columns as a plain Parquet `binary` instead of a `binary (UTF8)`. ## How was this patch tested? New test case added in `ParquetFilterSuite`. Author: Cheng Lian <lian@databricks.com> Closes apache#16106 from liancheng/spark-17213-bad-string-ppd. (cherry picked from commit ca63916) Signed-off-by: Reynold Xin <rxin@databricks.com>
…-catalog tables ## What changes were proposed in this pull request? In Spark 2.1 ListingFileCatalog was significantly refactored (and renamed to InMemoryFileIndex). This introduced a regression where parallelism could only be introduced at the very top of the tree. However, in many cases (e.g. `spark.read.parquet(topLevelDir)`), the top of the tree is only a single directory. This PR simplifies and fixes the parallel recursive listing code to allow parallelism to be introduced at any level during recursive descent (though note that once we decide to list a sub-tree in parallel, the sub-tree is listed in serial on executors). cc mallman cloud-fan ## How was this patch tested? Checked metrics in unit tests. Author: Eric Liang <ekl@databricks.com> Closes apache#16112 from ericl/spark-18679. (cherry picked from commit 294163e) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
## What changes were proposed in this pull request? Currently, `JDBCRelation.insert` removes Spark options too early by mistakenly using `asConnectionProperties`. Spark options like `numPartitions` should be passed into `DataFrameWriter.jdbc` correctly. This bug have been **hidden** because `JDBCOptions.asConnectionProperties` fails to filter out the mixed-case options. This PR aims to fix both. **JDBCRelation.insert** ```scala override def insert(data: DataFrame, overwrite: Boolean): Unit = { val url = jdbcOptions.url val table = jdbcOptions.table - val properties = jdbcOptions.asConnectionProperties + val properties = jdbcOptions.asProperties data.write .mode(if (overwrite) SaveMode.Overwrite else SaveMode.Append) .jdbc(url, table, properties) ``` **JDBCOptions.asConnectionProperties** ```scala scala> import org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions scala> import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap scala> new JDBCOptions(Map("url" -> "jdbc:mysql://localhost:3306/temp", "dbtable" -> "t1", "numPartitions" -> "10")).asConnectionProperties res0: java.util.Properties = {numpartitions=10} scala> new JDBCOptions(new CaseInsensitiveMap(Map("url" -> "jdbc:mysql://localhost:3306/temp", "dbtable" -> "t1", "numPartitions" -> "10"))).asConnectionProperties res1: java.util.Properties = {numpartitions=10} ``` ## How was this patch tested? Pass the Jenkins with a new testcase. Author: Dongjoon Hyun <dongjoon@apache.org> Closes apache#15863 from dongjoon-hyun/SPARK-18419. (cherry picked from commit 55d528f) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…rce tables ## What changes were proposed in this pull request? Two bugs are addressed here 1. INSERT OVERWRITE TABLE sometime crashed when catalog partition management was enabled. This was because when dropping partitions after an overwrite operation, the Hive client will attempt to delete the partition files. If the entire partition directory was dropped, this would fail. The PR fixes this by adding a flag to control whether the Hive client should attempt to delete files. 2. The static partition spec for OVERWRITE TABLE was not correctly resolved to the case-sensitive original partition names. This resulted in the entire table being overwritten if you did not correctly capitalize your partition names. cc yhuai cloud-fan ## How was this patch tested? Unit tests. Surprisingly, the existing overwrite table tests did not catch these edge cases. Author: Eric Liang <ekl@databricks.com> Closes apache#16088 from ericl/spark-18659. (cherry picked from commit 7935c84) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
### What changes were proposed in this pull request? Added a test case for using joins with nested fields. ### How was this patch tested? N/A Author: gatorsmile <gatorsmile@gmail.com> Closes apache#16110 from gatorsmile/followup-18674. (cherry picked from commit 2f8776c) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
## What changes were proposed in this pull request? This fixes the parser rule to match named expressions, which doesn't work for two reasons: 1. The name match is not coerced to a regular expression (missing .r) 2. The surrounding literals are incorrect and attempt to escape a single quote, which is unnecessary ## How was this patch tested? This adds test cases for named expressions using the bracket syntax, including one with quoted spaces. Author: Ryan Blue <blue@apache.org> Closes apache#16107 from rdblue/SPARK-18677-fix-json-path. (cherry picked from commit 4877897) Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…park release ## What changes were proposed in this pull request? When R is starting as a package and it needs to download the Spark release distribution we need to handle error for download and untar, and clean up, otherwise it will get stuck. ## How was this patch tested? manually Author: Felix Cheung <felixcheung_m@hotmail.com> Closes apache#16589 from felixcheung/rtarreturncode. (cherry picked from commit 278fa1e) Signed-off-by: Felix Cheung <felixcheung@apache.org>
…waitInitialization to avoid breaking tests ## What changes were proposed in this pull request? apache#16492 missed one race condition: `StreamExecution.awaitInitialization` may throw fatal errors and fail the test. This PR just ignores `StreamingQueryException` thrown from `awaitInitialization` so that we can verify the exception in the `ExpectFailure` action later. It's fine since `StopStream` or `ExpectFailure` will catch `StreamingQueryException` as well. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes apache#16567 from zsxwing/SPARK-19113-2. (cherry picked from commit c050c12) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
… error ## What changes were proposed in this pull request? We should call `StateStore.abort()` when there should be any error before the store is committed. ## How was this patch tested? Manually. Author: Liwei Lin <lwlin7@gmail.com> Closes apache#16547 from lw-lin/append-filter. (cherry picked from commit 569e506) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
…ing when append data to an existing table ## What changes were proposed in this pull request? When we append data to an existing table with `DataFrameWriter.saveAsTable`, we will do various checks to make sure the appended data is consistent with the existing data. However, we get the information of the existing table by matching the table relation, instead of looking at the table metadata. This is error-prone, e.g. we only check the number of columns for `HadoopFsRelation`, we forget to check bucketing, etc. This PR refactors the error checking by looking at the metadata of the existing table, and fix several bugs: * SPARK-18899: We forget to check if the specified bucketing matched the existing table, which may lead to a problematic table that has different bucketing in different data files. * SPARK-18912: We forget to check the number of columns for non-file-based data source table * SPARK-18913: We don't support append data to a table with special column names. ## How was this patch tested? new regression test. Author: Wenchen Fan <wenchen@databricks.com> Closes apache#16313 from cloud-fan/bug1. (cherry picked from commit f923c84) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…tructured Streaming plan ## What changes were proposed in this pull request? Sort in a streaming plan should be allowed only after a aggregation in complete mode. Currently it is incorrectly allowed when present anywhere in the plan. It gives unpredictable potentially incorrect results. ## How was this patch tested? New test Author: Tathagata Das <tathagata.das1565@gmail.com> Closes apache#16662 from tdas/SPARK-19314. (cherry picked from commit 552e5f0) Signed-off-by: Tathagata Das <tathagata.das1565@gmail.com>
… of join PythonUDF is unevaluable, which can not be used inside a join condition, currently the optimizer will push a PythonUDF which accessing both side of join into the join condition, then the query will fail to plan. This PR fix this issue by checking the expression is evaluable or not before pushing it into Join. Add a regression test. Author: Davies Liu <davies@databricks.com> Closes apache#16581 from davies/pyudf_join.
## What changes were proposed in this pull request? There is a race condition when stopping StateStore which makes `StateStoreSuite.maintenance` flaky. `StateStore.stop` doesn't wait for the running task to finish, and an out-of-date task may fail `doMaintenance` and cancel the new task. Here is a reproducer: zsxwing@dde1b5b This PR adds MaintenanceTask to eliminate the race condition. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Author: Tathagata Das <tathagata.das1565@gmail.com> Closes apache#16627 from zsxwing/SPARK-19267. (cherry picked from commit ea31f92) Signed-off-by: Tathagata Das <tathagata.das1565@gmail.com>
…hould case insensitive ## What changes were proposed in this pull request? MLlib ```GeneralizedLinearRegression``` ```family``` and ```link``` should be case insensitive. This is consistent with some other MLlib params such as [```featureSubsetStrategy```](https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala#L415). ## How was this patch tested? Update corresponding tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes apache#16516 from yanboliang/spark-19133. (cherry picked from commit 3dcad9f) Signed-off-by: Yanbo Liang <ybliang8@gmail.com>
## What changes were proposed in this pull request? This is a supplement to PR apache#16516 which did not make the value from `getFamily` case insensitive. Current tests of poisson/binomial glm with weight fail when specifying 'Poisson' or 'Binomial', because the calculation of `dispersion` and `pValue` checks the value of family retrieved from `getFamily` ``` model.getFamily == Binomial.name || model.getFamily == Poisson.name ``` ## How was this patch tested? Update existing tests for 'Poisson' and 'Binomial'. yanboliang felixcheung imatiach-msft Author: actuaryzhang <actuaryzhang10@gmail.com> Closes apache#16675 from actuaryzhang/family. (cherry picked from commit f067ace) Signed-off-by: Yanbo Liang <ybliang8@gmail.com>
…pection occurred ## What changes were proposed in this pull request? In `DiskBlockObjectWriter`, when some errors happened during writing, it will call `revertPartialWritesAndClose`, if this method again failed due to some issues like out of disk, it will throw exception without resetting the state of this writer, also skipping the revert. So here propose to fix this issue to offer user a chance to recover from such issue. ## How was this patch tested? Existing test. Author: jerryshao <sshao@hortonworks.com> Closes apache#16657 from jerryshao/SPARK-19306. (cherry picked from commit e497472) Signed-off-by: Marcelo Vanzin <vanzin@cloudera.com>
…ressions that require equality comparison between ScalaUDF ## What changes were proposed in this pull request? Currently, running the codes in Java ```java spark.udf().register("inc", new UDF1<Long, Long>() { Override public Long call(Long i) { return i + 1; } }, DataTypes.LongType); spark.range(10).toDF("x").createOrReplaceTempView("tmp"); Row result = spark.sql("SELECT inc(x) FROM tmp GROUP BY inc(x)").head(); Assert.assertEquals(7, result.getLong(0)); ``` fails as below: ``` org.apache.spark.sql.AnalysisException: expression 'tmp.`x`' is neither present in the group by, nor is it an aggregate function. Add to group by or wrap in first() (or first_value) if you don't care which value you get.;; Aggregate [UDF(x#19L)], [UDF(x#19L) AS UDF(x)#23L] +- SubqueryAlias tmp, `tmp` +- Project [id#16L AS x#19L] +- Range (0, 10, step=1, splits=Some(8)) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:57) ``` The root cause is because we were creating the function every time when it needs to build as below: ```scala scala> def inc(i: Int) = i + 1 inc: (i: Int)Int scala> (inc(_: Int)).hashCode res15: Int = 1231799381 scala> (inc(_: Int)).hashCode res16: Int = 2109839984 scala> (inc(_: Int)) == (inc(_: Int)) res17: Boolean = false ``` This seems leading to the comparison failure between `ScalaUDF`s created from Java UDF API, for example, in `Expression.semanticEquals`. In case of Scala one, it seems already fine. Both can be tested easily as below if any reviewer is more comfortable with Scala: ```scala val df = Seq((1, 10), (2, 11), (3, 12)).toDF("x", "y") val javaUDF = new UDF1[Int, Int] { override def call(i: Int): Int = i + 1 } // spark.udf.register("inc", javaUDF, IntegerType) // Uncomment this for Java API // spark.udf.register("inc", (i: Int) => i + 1) // Uncomment this for Scala API df.createOrReplaceTempView("tmp") spark.sql("SELECT inc(y) FROM tmp GROUP BY inc(y)").show() ``` ## How was this patch tested? Unit test in `JavaUDFSuite.java` and `./dev/lint-java`. Author: hyukjinkwon <gurwls223@gmail.com> Closes apache#16553 from HyukjinKwon/SPARK-9435. (cherry picked from commit e576c1e) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
…ries ## What changes were proposed in this pull request? As adaptive query execution may change the number of partitions in different batches, it may break streaming queries. Hence, we should disallow this feature in Structured Streaming. ## How was this patch tested? `test("SPARK-19268: Adaptive query execution should be disallowed")`. Author: Shixiong Zhu <shixiong@databricks.com> Closes apache#16683 from zsxwing/SPARK-19268. (cherry picked from commit 60bd91a) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
## What changes were proposed in this pull request? Support for ``` df[[myname]] <- 1 df[[2]] <- df$eruptions ``` ## How was this patch tested? manual tests, unit tests Author: Felix Cheung <felixcheung_m@hotmail.com> Closes apache#16663 from felixcheung/rcolset. (cherry picked from commit f27e024) Signed-off-by: Felix Cheung <felixcheung@apache.org>
[SPARK-16473][MLLIB] Fix BisectingKMeans Algorithm failing in edge case where no children exist in updateAssignments ## What changes were proposed in this pull request? Fix a bug in which BisectingKMeans fails with error: java.util.NoSuchElementException: key not found: 166 at scala.collection.MapLike$class.default(MapLike.scala:228) at scala.collection.AbstractMap.default(Map.scala:58) at scala.collection.MapLike$class.apply(MapLike.scala:141) at scala.collection.AbstractMap.apply(Map.scala:58) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply$mcDJ$sp(BisectingKMeans.scala:338) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply(BisectingKMeans.scala:337) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply(BisectingKMeans.scala:337) at scala.collection.TraversableOnce$$anonfun$minBy$1.apply(TraversableOnce.scala:231) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) at scala.collection.immutable.List.foldLeft(List.scala:84) at scala.collection.LinearSeqOptimized$class.reduceLeft(LinearSeqOptimized.scala:125) at scala.collection.immutable.List.reduceLeft(List.scala:84) at scala.collection.TraversableOnce$class.minBy(TraversableOnce.scala:231) at scala.collection.AbstractTraversable.minBy(Traversable.scala:105) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1.apply(BisectingKMeans.scala:337) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1.apply(BisectingKMeans.scala:334) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:389) ## How was this patch tested? The dataset was run against the code change to verify that the code works. I will try to add unit tests to the code. (Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests) (If this patch involves UI changes, please attach a screenshot; otherwise, remove this) Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Ilya Matiach <ilmat@microsoft.com> Closes apache#16355 from imatiach-msft/ilmat/fix-kmeans.
…rn incorrect results ## What changes were proposed in this pull request? This PR fixes the code in Optimizer phase where the NULL-aware expression of a NOT IN query is expanded in Rule `RewritePredicateSubquery`. Example: The query select a1,b1 from t1 where (a1,b1) not in (select a2,b2 from t2); has the (a1, b1) = (a2, b2) rewritten from (before this fix): Join LeftAnti, ((isnull((_1#2 = a2#16)) || isnull((_2#3 = b2#17))) || ((_1#2 = a2#16) && (_2#3 = b2#17))) to (after this fix): Join LeftAnti, (((_1#2 = a2#16) || isnull((_1#2 = a2#16))) && ((_2#3 = b2#17) || isnull((_2#3 = b2#17)))) ## How was this patch tested? sql/test, catalyst/test and new test cases in SQLQueryTestSuite. Author: Nattavut Sutyanyong <nsy.can@gmail.com> Closes apache#16467 from nsyca/19017. (cherry picked from commit cdb691e) Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
## What changes were proposed in this pull request? ### Before  ### After  ## How was this patch tested? Manually Author: Liwei Lin <lwlin7@gmail.com> Closes apache#16673 from lw-lin/streaming. (cherry picked from commit 40a4cfc) Signed-off-by: Shixiong Zhu <shixiong@databricks.com>
## What changes were proposed in this pull request? - A separate subsection for Aggregations under “Getting Started” in the Spark SQL programming guide. It mentions which aggregate functions are predefined and how users can create their own. - Examples of using the `UserDefinedAggregateFunction` abstract class for untyped aggregations in Java and Scala. - Examples of using the `Aggregator` abstract class for type-safe aggregations in Java and Scala. - Python is not covered. - The PR might not resolve the ticket since I do not know what exactly was planned by the author. In total, there are four new standalone examples that can be executed via `spark-submit` or `run-example`. The updated Spark SQL programming guide references to these examples and does not contain hard-coded snippets. ## How was this patch tested? The patch was tested locally by building the docs. The examples were run as well.  Author: aokolnychyi <okolnychyyanton@gmail.com> Closes apache#16329 from aokolnychyi/SPARK-16046. (cherry picked from commit 3fdce81) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
That method is prone to stack overflows when the input map is really large; instead, use plain "map". Also includes a unit test that was tested and caused stack overflows without the fix. Author: Marcelo Vanzin <vanzin@cloudera.com> Closes apache#16667 from vanzin/SPARK-18750. (cherry picked from commit 76db394) Signed-off-by: Tom Graves <tgraves@yahoo-inc.com>
…in a subquery does not yield an error ## What changes were proposed in this pull request? This PR will report proper error messages when a subquery expression contain an invalid plan. This problem is fixed by calling CheckAnalysis for the plan inside a subquery. ## How was this patch tested? Existing tests and two new test cases on 2 forms of subquery, namely, scalar subquery and in/exists subquery. ```` -- TC 01.01 -- The column t2b in the SELECT of the subquery is invalid -- because it is neither an aggregate function nor a GROUP BY column. select t1a, t2b from t1, t2 where t1b = t2c and t2b = (select max(avg) from (select t2b, avg(t2b) avg from t2 where t2a = t1.t1b ) ) ; -- TC 01.02 -- Invalid due to the column t2b not part of the output from table t2. select * from t1 where t1a in (select min(t2a) from t2 group by t2c having t2c in (select max(t3c) from t3 group by t3b having t3b > t2b )) ; ```` Author: Nattavut Sutyanyong <nsy.can@gmail.com> Closes apache#16572 from nsyca/18863. (cherry picked from commit f1ddca5) Signed-off-by: Herman van Hovell <hvanhovell@databricks.com>
…ext. The code was failing to propagate the user conf in the case where the JVM was already initialized, which happens when a user submits a python script via spark-submit. Tested with new unit test and by running a python script in a real cluster. Author: Marcelo Vanzin <vanzin@cloudera.com> Closes apache#16682 from vanzin/SPARK-19307. (cherry picked from commit 92afaa9) Signed-off-by: Marcelo Vanzin <vanzin@cloudera.com>
…branch. Author: Marcelo Vanzin <vanzin@cloudera.com> Closes apache#16704 from vanzin/SPARK-18750_2.1.
## What changes were proposed in this pull request? Fix instalation of mllib and ml sub components, and more eagerly cleanup cache files during test script & make-distribution. ## How was this patch tested? Updated sanity test script to import mllib and ml sub-components. Author: Holden Karau <holden@us.ibm.com> Closes apache#16465 from holdenk/SPARK-19064-fix-pip-install-sub-components. (cherry picked from commit 965c82d) Signed-off-by: Holden Karau <holden@us.ibm.com>
## What changes were proposed in this pull request? EdgeRDD/VertexRDD overrides checkpoint() and isCheckpointed() to forward these to the internal partitionRDD. So when checkpoint() is called on them, its the partitionRDD that actually gets checkpointed. However since isCheckpointed() also overridden to call partitionRDD.isCheckpointed, EdgeRDD/VertexRDD.isCheckpointed returns true even though this RDD is actually not checkpointed. This would have been fine except the RDD's internal logic for computing the RDD depends on isCheckpointed(). So for VertexRDD/EdgeRDD, since isCheckpointed is true, when computing Spark tries to read checkpoint data of VertexRDD/EdgeRDD even though they are not actually checkpointed. Through a crazy sequence of call forwarding, it reads checkpoint data of partitionsRDD and tries to cast it to types in Vertex/EdgeRDD. This leads to ClassCastException. The minimal fix that does not change any public behavior is to modify RDD internal to not use public override-able API for internal logic. ## How was this patch tested? New unit tests. Author: Tathagata Das <tathagata.das1565@gmail.com> Closes apache#15396 from tdas/SPARK-14804. (cherry picked from commit 47d5d0d) Signed-off-by: Tathagata Das <tathagata.das1565@gmail.com>
## What changes were proposed in this pull request? This pr added a variable for a UDF name in `ScalaUDF`. Then, if the variable filled, `DataFrame#explain` prints the name. ## How was this patch tested? Added a test in `UDFSuite`. Author: Takeshi YAMAMURO <linguin.m.s@gmail.com> Closes apache#16707 from maropu/SPARK-19338. (cherry picked from commit 9f523d3) Signed-off-by: gatorsmile <gatorsmile@gmail.com>
…h-2.1) The redirect handler was installed only for the root of the server; any other context ended up being served directly through the HTTP port. Since every sub page (e.g. application UIs in the history server) is a separate servlet context, this meant that everything but the root was accessible via HTTP still. The change adds separate names to each connector, and binds contexts to specific connectors so that content is only served through the HTTPS connector when it's enabled. In that case, the only thing that binds to the HTTP connector is the redirect handler. Tested with new unit tests and by checking a live history server. (cherry picked from commit d3dcb63) Author: Marcelo Vanzin <vanzin@cloudera.com> Closes apache#16711 from vanzin/SPARK-19220_2.1.
## What changes were proposed in this pull request? With doc to say this would convert DF into RDD ## How was this patch tested? unit tests, manual tests Author: Felix Cheung <felixcheung_m@hotmail.com> Closes apache#16668 from felixcheung/rgetnumpartitions. (cherry picked from commit 90817a6) Signed-off-by: Felix Cheung <felixcheung@apache.org>
## What changes were proposed in this pull request? add header ## How was this patch tested? Manual run to check vignettes html is created properly Author: Felix Cheung <felixcheung_m@hotmail.com> Closes apache#16709 from felixcheung/rfilelicense. (cherry picked from commit 385d738) Signed-off-by: Felix Cheung <felixcheung@apache.org>
…parkR ## What changes were proposed in this pull request? This affects mostly running job from the driver in client mode when results are expected to be through stdout (which should be somewhat rare, but possible) Before: ``` > a <- as.DataFrame(cars) > b <- group_by(a, "dist") > c <- count(b) > sparkR.callJMethod(c$countjc, "explain", TRUE) NULL ``` After: ``` > a <- as.DataFrame(cars) > b <- group_by(a, "dist") > c <- count(b) > sparkR.callJMethod(c$countjc, "explain", TRUE) count#11L NULL ``` Now, `column.explain()` doesn't seem very useful (we can get more extensive output with `DataFrame.explain()`) but there are other more complex examples with calls of `println` in Scala/JVM side, that are getting dropped. ## How was this patch tested? manual Author: Felix Cheung <felixcheung_m@hotmail.com> Closes apache#16670 from felixcheung/rjvmstdout. (cherry picked from commit a7ab6f9) Signed-off-by: Shivaram Venkataraman <shivaram@cs.berkeley.edu>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
backport #16721 to branch-2.1
How was this patch tested?
manual