Skip to content
forked from Yang7879/3D-BoNet

3D-BoNet in Tensorflow (NeurIPS 2019, Spotlight)

License

Notifications You must be signed in to change notification settings

SLAM7F3/3D-BoNet

 
 

Repository files navigation

Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds

Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni. arXiv:1906.01140, 2019.

(1) Setup

ubuntu 16.04 + cuda 8.0

python 2.7 or 3.6

tensorflow 1.2 or 1.4

scipy 1.3

h5py 2.9

open3d-python 0.3.0

Compile tf_ops

(1) To find tensorflow include path and library paths:

import tensorflow as tf
print(tf.sysconfig.get_include())
print(tf.sysconfig.get_lib())

(2) To change the path in all the complie files, e.g. tf_ops/sampling/tf_sampling_compile.sh, and then compile:

cd tf_ops/sampling
chmod +x tf_sampling_compile.sh
./tf_sampling_compile.sh

(2) Data

S3DIS: https://drive.google.com/open?id=1hOsoOqOWKSZIgAZLu2JmOb_U8zdR04v0

Acknowledgement: we use the same data released by JSIS3D.

(3) Train/test

python main_train.py

python main_eval.py

(4) Quantitative Results on ScanNet

Arch Image

(5) Qualitative Results on ScanNet

Arch Image

2 z
z z

More results of ScanNet validation split are available at: More ScanNet Results

To visualize: python helper_data_scannet.py

(6) Qualitative Results on S3DIS

z z

Teaser Image

(7) Training Curves on S3DIS

Teaser Image

(8) Video Demo (Youtube)

About

3D-BoNet in Tensorflow (NeurIPS 2019, Spotlight)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 52.2%
  • C++ 26.1%
  • Cuda 18.4%
  • Shell 3.3%