forked from Yang7879/3D-BoNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper_data_plot.py
69 lines (60 loc) · 2.01 KB
/
helper_data_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import os
import scipy.io
import copy
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from open3d import linux as open3d ## pip install open3d-python==0.3.0
import random
import colorsys
class Plot:
@staticmethod
def random_colors(N, bright=True, seed=0):
brightness = 1.0 if bright else 0.7
hsv = [( 0.15+ i/float(N), 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(seed)
random.shuffle(colors)
return colors
@staticmethod
def draw_pc(pc_xyzrgb):
pc = open3d.PointCloud()
pc.points = open3d.Vector3dVector(pc_xyzrgb[:, 0:3])
if pc_xyzrgb.shape[1]==3:
open3d.draw_geometries([pc])
return 0
if np.max(pc_xyzrgb[:, 3:6])>20: ## 0-255
pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6]/255.)
else:
pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6])
open3d.draw_geometries([pc])
return 0
@staticmethod
def draw_pc_semins(pc_xyz, pc_semins, fix_color_num=None):
if fix_color_num is not None:
ins_colors = Plot.random_colors(fix_color_num+1, seed=2)
else:
ins_colors = Plot.random_colors(len(np.unique(pc_semins))+1, seed=2) # cls 14
##############################
semins_labels = np.unique(pc_semins)
semins_bbox = []
Y_colors = np.zeros((pc_semins.shape[0], 3))
for id, semins in enumerate(semins_labels):
valid_ind = np.argwhere(pc_semins == semins)[:, 0]
if semins<=-1:
tp=[0,0,0]
else:
if fix_color_num is not None:
tp = ins_colors[semins]
else:
tp = ins_colors[id]
Y_colors[valid_ind] = tp
### bbox
valid_xyz = pc_xyz[valid_ind]
xmin = np.min(valid_xyz[:, 0]); xmax = np.max(valid_xyz[:, 0])
ymin = np.min(valid_xyz[:, 1]); ymax = np.max(valid_xyz[:, 1])
zmin = np.min(valid_xyz[:, 2]); zmax = np.max(valid_xyz[:, 2])
semins_bbox.append([[xmin, ymin, zmin], [xmax, ymax, zmax], [min(tp[0], 1.), min(tp[1], 1.), min(tp[2], 1.)]])
Y_semins = np.concatenate([pc_xyz[:, 0:3], Y_colors], axis=-1)
Plot.draw_pc(Y_semins)
return Y_semins