forked from Yang7879/3D-BoNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper_data_s3dis.py
234 lines (199 loc) · 10.4 KB
/
helper_data_s3dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import glob
import numpy as np
import random
import copy
from random import shuffle
import h5py
class Data_Configs:
sem_names = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter']
sem_ids = [0,1,2,3,4,5,6,7,8,9,10,11,12]
points_cc = 9
sem_num = len(sem_names)
ins_max_num = 24
train_pts_num = 4096
test_pts_num = 4096
class Data_S3DIS:
def __init__(self, dataset_path, train_areas, test_areas, train_batch_size=4):
self.root_folder_4_traintest = dataset_path
self.train_files = self.load_full_file_list(areas = train_areas)
self.test_files = self.load_full_file_list(areas = test_areas)
print('train files:', len(self.train_files))
print('test files:', len(self.test_files))
self.ins_max_num = Data_Configs.ins_max_num
self.train_batch_size = train_batch_size
self.total_train_batch_num = len(self.train_files)//self.train_batch_size
self.train_next_bat_index = 0
def load_full_file_list(self, areas):
all_files =[]
for a in areas:
print('check area:', a)
files = sorted(glob.glob(self.root_folder_4_traintest + a + '*.h5'))
for f in files:
fin = h5py.File(f, 'r')
coords = fin['coords'][:]
semIns_labels = fin['labels'][:].reshape([-1, 2])
ins_labels = semIns_labels[:,1]
sem_labels = semIns_labels[:,0]
data_valid = True
ins_idx = np.unique(ins_labels)
for i_i in ins_idx:
if i_i<=-1: continue
sem_labels_tp = sem_labels[ins_labels==i_i]
unique_sem_labels = np.unique(sem_labels_tp)
if len(unique_sem_labels) >= 2:
print('>= 2 sem for an ins:', f)
data_valid = False
break
if not data_valid: continue
block_num = coords.shape[0]
for b in range(block_num):
all_files.append(f+'_'+str(b).zfill(4))
return all_files
@staticmethod
def load_raw_data_file_s3dis_block(file_path):
block_id = int(file_path[-4:])
file_path = file_path[0:-5]
fin = h5py.File(file_path, 'r')
coords = fin['coords'][block_id]
points = fin['points'][block_id]
semIns_labels = fin['labels'][block_id]
pc = np.concatenate([coords, points[:,3:9]], axis=-1)
sem_labels = semIns_labels[:,0]
ins_labels = semIns_labels[:,1]
## if u need to visulize data, uncomment the following lines
#from helper_data_plot import Plot as Plot
#Plot.draw_pc(pc)
#Plot.draw_pc_semins(pc_xyz=pc[:, 0:3], pc_semins=sem_labels, fix_color_num=13)
#Plot.draw_pc_semins(pc_xyz=pc[:, 0:3], pc_semins=ins_labels)
return pc, sem_labels, ins_labels
@staticmethod
def get_bbvert_pmask_labels(pc, ins_labels):
gt_bbvert_padded = np.zeros((Data_Configs.ins_max_num, 2, 3), dtype=np.float32)
gt_pmask = np.zeros((Data_Configs.ins_max_num, pc.shape[0]), dtype=np.float32)
count = -1
unique_ins_labels = np.unique(ins_labels)
for ins_ind in unique_ins_labels:
if ins_ind <= -1: continue
count += 1
if count >= Data_Configs.ins_max_num: print('ignored! more than max instances:', len(unique_ins_labels)); continue
ins_labels_tp = np.zeros(ins_labels.shape, dtype=np.int8)
ins_labels_tp[ins_labels == ins_ind] = 1
ins_labels_tp = np.reshape(ins_labels_tp, [-1])
gt_pmask[count,:] = ins_labels_tp
ins_labels_tp_ind = np.argwhere(ins_labels_tp == 1)
ins_labels_tp_ind = np.reshape(ins_labels_tp_ind, [-1])
###### bb min_xyz, max_xyz
pc_xyz_tp = pc[:, 0:3]
pc_xyz_tp = pc_xyz_tp[ins_labels_tp_ind]
gt_bbvert_padded[count, 0, 0] = x_min = np.min(pc_xyz_tp[:, 0])
gt_bbvert_padded[count, 0, 1] = y_min = np.min(pc_xyz_tp[:, 1])
gt_bbvert_padded[count, 0, 2] = z_min = np.min(pc_xyz_tp[:, 2])
gt_bbvert_padded[count, 1, 0] = x_max = np.max(pc_xyz_tp[:, 0])
gt_bbvert_padded[count, 1, 1] = y_max = np.max(pc_xyz_tp[:, 1])
gt_bbvert_padded[count, 1, 2] = z_max = np.max(pc_xyz_tp[:, 2])
return gt_bbvert_padded, gt_pmask
@staticmethod
def load_fixed_points(file_path):
pc_xyzrgb, sem_labels, ins_labels = Data_S3DIS.load_raw_data_file_s3dis_block(file_path)
### center xy within the block
min_x = np.min(pc_xyzrgb[:,0]); max_x = np.max(pc_xyzrgb[:,0])
min_y = np.min(pc_xyzrgb[:,1]); max_y = np.max(pc_xyzrgb[:,1])
min_z = np.min(pc_xyzrgb[:,2]); max_z = np.max(pc_xyzrgb[:,2])
ori_xyz = copy.deepcopy(pc_xyzrgb[:, 0:3]) # reserved for final visualization
use_zero_one_center = True
if use_zero_one_center:
pc_xyzrgb[:, 0:1] = (pc_xyzrgb[:, 0:1] - min_x)/ np.maximum((max_x - min_x), 1e-3)
pc_xyzrgb[:, 1:2] = (pc_xyzrgb[:, 1:2] - min_y)/ np.maximum((max_y - min_y), 1e-3)
pc_xyzrgb[:, 2:3] = (pc_xyzrgb[:, 2:3] - min_z)/ np.maximum((max_z - min_z), 1e-3)
pc_xyzrgb = np.concatenate([pc_xyzrgb, ori_xyz], axis=-1)
########
sem_labels = sem_labels.reshape([-1])
ins_labels = ins_labels.reshape([-1])
bbvert_padded_labels, pmask_padded_labels = Data_S3DIS.get_bbvert_pmask_labels(pc_xyzrgb, ins_labels)
psem_onehot_labels = np.zeros((pc_xyzrgb.shape[0], Data_Configs.sem_num), dtype=np.int8)
for idx, s in enumerate(sem_labels):
if sem_labels[idx]==-1: continue # invalid points
sem_idx = Data_Configs.sem_ids.index(s)
psem_onehot_labels[idx, sem_idx] =1
return pc_xyzrgb, sem_labels, ins_labels, psem_onehot_labels, bbvert_padded_labels, pmask_padded_labels
def load_train_next_batch(self):
bat_files = self.train_files[self.train_next_bat_index*self.train_batch_size:(self.train_next_bat_index+1)*self.train_batch_size]
bat_pc=[]
bat_sem_labels=[]
bat_ins_labels=[]
bat_psem_onehot_labels =[]
bat_bbvert_padded_labels=[]
bat_pmask_padded_labels =[]
for file in bat_files:
pc, sem_labels, ins_labels, psem_onehot_labels, bbvert_padded_labels, pmask_padded_labels = Data_S3DIS.load_fixed_points(file)
bat_pc.append(pc)
bat_sem_labels.append(sem_labels)
bat_ins_labels.append(ins_labels)
bat_psem_onehot_labels.append(psem_onehot_labels)
bat_bbvert_padded_labels.append(bbvert_padded_labels)
bat_pmask_padded_labels.append(pmask_padded_labels)
bat_pc = np.asarray(bat_pc, dtype=np.float32)
bat_sem_labels = np.asarray(bat_sem_labels, dtype=np.float32)
bat_ins_labels = np.asarray(bat_ins_labels, dtype=np.float32)
bat_psem_onehot_labels = np.asarray(bat_psem_onehot_labels, dtype=np.float32)
bat_bbvert_padded_labels = np.asarray(bat_bbvert_padded_labels, dtype=np.float32)
bat_pmask_padded_labels = np.asarray(bat_pmask_padded_labels, dtype=np.float32)
self.train_next_bat_index+=1
return bat_pc, bat_sem_labels, bat_ins_labels, bat_psem_onehot_labels, bat_bbvert_padded_labels, bat_pmask_padded_labels
def load_test_next_batch_random(self):
idx = random.sample(range(len(self.test_files)), self.train_batch_size)
bat_pc=[]
bat_sem_labels=[]
bat_ins_labels=[]
bat_psem_onehot_labels =[]
bat_bbvert_padded_labels=[]
bat_pmask_padded_labels =[]
for i in idx:
file = self.test_files[i]
pc, sem_labels, ins_labels, psem_onehot_labels, bbvert_padded_labels, pmask_padded_labels = Data_S3DIS.load_fixed_points(file)
bat_pc.append(pc)
bat_sem_labels.append(sem_labels)
bat_ins_labels.append(ins_labels)
bat_psem_onehot_labels.append(psem_onehot_labels)
bat_bbvert_padded_labels.append(bbvert_padded_labels)
bat_pmask_padded_labels.append(pmask_padded_labels)
bat_pc = np.asarray(bat_pc, dtype=np.float32)
bat_sem_labels = np.asarray(bat_sem_labels, dtype=np.float32)
bat_ins_labels = np.asarray(bat_ins_labels, dtype=np.float32)
bat_psem_onehot_labels = np.asarray(bat_psem_onehot_labels, dtype=np.float32)
bat_bbvert_padded_labels = np.asarray(bat_bbvert_padded_labels, dtype=np.float32)
bat_pmask_padded_labels = np.asarray(bat_pmask_padded_labels, dtype=np.float32)
return bat_pc, bat_sem_labels, bat_ins_labels, bat_psem_onehot_labels, bat_bbvert_padded_labels, bat_pmask_padded_labels
def load_test_next_batch_sq(self, bat_files):
bat_pc=[]
bat_sem_labels=[]
bat_ins_labels=[]
bat_psem_onehot_labels =[]
bat_bbvert_padded_labels=[]
bat_pmask_padded_labels =[]
for file in bat_files:
pc, sem_labels, ins_labels, psem_onehot_labels, bbvert_padded_labels, pmask_padded_labels = Data_S3DIS.load_fixed_points(file)
bat_pc += [pc]
bat_sem_labels += [sem_labels]
bat_ins_labels += [ins_labels]
bat_psem_onehot_labels += [psem_onehot_labels]
bat_bbvert_padded_labels += [bbvert_padded_labels]
bat_pmask_padded_labels += [pmask_padded_labels]
bat_pc = np.asarray(bat_pc, dtype=np.float32)
bat_sem_labels = np.asarray(bat_sem_labels, dtype=np.float32)
bat_ins_labels = np.asarray(bat_ins_labels, dtype=np.float32)
bat_psem_onehot_labels = np.asarray(bat_psem_onehot_labels, dtype=np.float32)
bat_bbvert_padded_labels = np.asarray(bat_bbvert_padded_labels, dtype=np.float32)
bat_pmask_padded_labels = np.asarray(bat_pmask_padded_labels, dtype=np.float32)
return bat_pc, bat_sem_labels, bat_ins_labels, bat_psem_onehot_labels, bat_bbvert_padded_labels, bat_pmask_padded_labels, bat_files
def shuffle_train_files(self, ep):
index = list(range(len(self.train_files)))
random.seed(ep)
shuffle(index)
train_files_new=[]
for i in index:
train_files_new.append(self.train_files[i])
self.train_files = train_files_new
self.train_next_bat_index=0
print('train files shuffled!')