forked from Yang7879/3D-BoNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper_pointnet2.py
233 lines (210 loc) · 12.5 KB
/
helper_pointnet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
print(ROOT_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/sampling'))
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/grouping'))
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/interpolation'))
from tf_ops.sampling.tf_sampling import farthest_point_sample, gather_point
from tf_ops.grouping.tf_grouping import query_ball_point, group_point, knn_point
from tf_ops.interpolation.tf_interpolate import three_nn, three_interpolate
import tensorflow as tf
import numpy as np
from helper_net import Ops as Ops
def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
if knn:
_, idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
def sample_and_group_all(xyz, points, use_xyz=True):
'''
Inputs:
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Outputs:
new_xyz: (batch_size, 1, 3) as (0,0,0)
new_points: (batch_size, 1, ndataset, 3+channel) TF tensor
Note:
Equivalent to sample_and_group with npoint=1, radius=inf, use (0,0,0) as the centroid
'''
#batch_size = xyz.get_shape()[0].value
batch_size = tf.shape(xyz)[0]
nsample = xyz.get_shape()[1].value
#new_xyz = tf.constant(np.tile(np.array([0,0,0]).reshape((1,1,3)), (batch_size,1,1)),dtype=tf.float32) # (batch_size, 1, 3)
new_xyz = tf.tile(np.array([0, 0, 0], dtype=np.float32).reshape((1, 1, 3)), (batch_size, 1, 1))
#idx = tf.constant(np.tile(np.array(range(nsample)).reshape((1,1,nsample)), (batch_size,1,1)))
idx = tf.tile(np.array(range(nsample), dtype=np.float32).reshape((1, 1, nsample)), (batch_size, 1, 1))
grouped_xyz = tf.reshape(xyz, (batch_size, 1, nsample, 3)) # (batch_size, npoint=1, nsample, 3)
if points is not None:
if use_xyz:
new_points = tf.concat([xyz, points], axis=2) # (batch_size, 16, 259)
else:
new_points = points
new_points = tf.expand_dims(new_points, 1) # (batch_size, 1, 16, 259)
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
def pointnet_sa_module(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope, bn=True, pooling='max', knn=False, use_xyz=True, use_nchw=False):
''' PointNet Set Abstraction (SA) Module
Input:
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor
npoint: int32 -- #points sampled in farthest point sampling
radius: float32 -- search radius in local region
nsample: int32 -- how many points in each local region
mlp: list of int32 -- output size for MLP on each point
mlp2: list of int32 -- output size for MLP on each region
group_all: bool -- group all points into one PC if set true, OVERRIDE
npoint, radius and nsample settings
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
Return:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
idx: (batch_size, npoint, nsample) int32 -- indices for local regions
'''
data_format = 'NCHW' if use_nchw else 'NHWC'
with tf.variable_scope(scope) as sc:
# Sample and Grouping
if group_all:
nsample = xyz.get_shape()[1].value
new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
else:
new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, knn, use_xyz)
# Point Feature Embedding
if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
for i, num_out_channel in enumerate(mlp):
####################################
new_points = Ops.xxlu(Ops.conv2d(new_points, k=(1, 1), out_c=num_out_channel, str=1, pad='VALID', name='l'+str(i)), label='lrelu')
#new_points = tf_util.conv2d(new_points, num_out_channel, [1,1],padding='VALID', stride=[1,1],
# bn=bn, is_training=is_training, scope='conv%d'%(i), bn_decay=bn_decay, data_format=data_format)
if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])
# Pooling in Local Regions
if pooling=='max':
new_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
elif pooling=='avg':
new_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
elif pooling=='weighted_avg':
with tf.variable_scope('weighted_avg'):
dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
exp_dists = tf.exp(-dists * 5)
weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
new_points *= weights # (batch_size, npoint, nsample, mlp[-1])
new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
elif pooling=='max_and_avg':
max_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
avg_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
new_points = tf.concat([avg_points, max_points], axis=-1)
# [Optional] Further Processing
if mlp2 is not None:
if use_nchw: new_points = tf.transpose(new_points, [0,3,1,2])
for i, num_out_channel in enumerate(mlp2):
####################################
new_points = Ops.xxlu(Ops.conv2d(new_points, k=(1, 1), out_c=num_out_channel, str=1, pad='VALID', name='ll' + str(i)), label='lrelu')
#new_points = tf_util.conv2d(new_points, num_out_channel, [1,1], padding='VALID', stride=[1,1],
#bn=bn, is_training=is_training, scope='conv_post_%d'%(i), bn_decay=bn_decay,data_format=data_format)
if use_nchw: new_points = tf.transpose(new_points, [0,2,3,1])
new_points = tf.squeeze(new_points, [2]) # (batch_size, npoints, mlp2[-1])
return new_xyz, new_points, idx
def pointnet_sa_module_msg(xyz, points, npoint, radius_list, nsample_list, mlp_list, is_training, bn_decay, scope, bn=True, use_xyz=True, use_nchw=False):
''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
Input:
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor
npoint: int32 -- #points sampled in farthest point sampling
radius: list of float32 -- search radius in local region
nsample: list of int32 -- how many points in each local region
mlp: list of list of int32 -- output size for MLP on each point
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
Return:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
'''
data_format = 'NCHW' if use_nchw else 'NHWC'
with tf.variable_scope(scope) as sc:
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
new_points_list = []
for i in range(len(radius_list)):
radius = radius_list[i]
nsample = nsample_list[i]
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1])
if points is not None:
grouped_points = group_point(points, idx)
if use_xyz:
grouped_points = tf.concat([grouped_points, grouped_xyz], axis=-1)
else:
grouped_points = grouped_xyz
if use_nchw: grouped_points = tf.transpose(grouped_points, [0,3,1,2])
for j,num_out_channel in enumerate(mlp_list[i]):
####################################
grouped_points = Ops.xxlu(Ops.conv2d(grouped_points, k=(1, 1), out_c=num_out_channel, str=1, pad='VALID', name='lll' + str(i)), label='lrelu')
#grouped_points = tf_util.conv2d(grouped_points, num_out_channel, [1,1],
#padding='VALID', stride=[1,1], bn=bn, is_training=is_training,scope='conv%d_%d'%(i,j), bn_decay=bn_decay)
if use_nchw: grouped_points = tf.transpose(grouped_points, [0,2,3,1])
new_points = tf.reduce_max(grouped_points, axis=[2])
new_points_list.append(new_points)
new_points_concat = tf.concat(new_points_list, axis=-1)
return new_xyz, new_points_concat
def pointnet_fp_module(xyz1, xyz2, points1, points2, mlp, is_training, bn_decay, scope, bn=True):
''' PointNet Feature Propogation (FP) Module
Input:
xyz1: (batch_size, ndataset1, 3) TF tensor
xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1
points1: (batch_size, ndataset1, nchannel1) TF tensor
points2: (batch_size, ndataset2, nchannel2) TF tensor
mlp: list of int32 -- output size for MLP on each point
Return:
new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
'''
with tf.variable_scope(scope) as sc:
dist, idx = three_nn(xyz1, xyz2)
dist = tf.maximum(dist, 1e-10)
norm = tf.reduce_sum((1.0/dist),axis=2,keep_dims=True)
norm = tf.tile(norm,[1,1,3])
weight = (1.0/dist) / norm
interpolated_points = three_interpolate(points2, idx, weight)
if points1 is not None:
new_points1 = tf.concat(axis=2, values=[interpolated_points, points1]) # B,ndataset1,nchannel1+nchannel2
else:
new_points1 = interpolated_points
new_points1 = tf.expand_dims(new_points1, 2)
for i, num_out_channel in enumerate(mlp):
####################################
new_points1 = Ops.xxlu(Ops.conv2d(new_points1, k=(1, 1), out_c=num_out_channel, str=1, pad='VALID', name='llll' + str(i)),label='lrelu')
#new_points1 = tf_util.conv2d(new_points1, num_out_channel, [1,1],padding='VALID', stride=[1,1],
# bn=bn, is_training=is_training,scope='conv_%d'%(i), bn_decay=bn_decay)
new_points1 = tf.squeeze(new_points1, [2]) # B,ndataset1,mlp[-1]
return new_points1