Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions examples/data_manager/vector_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ def run():
'milvus',
'chromadb',
'docarray',
'redis'
'redis',
'weaviate',
]
for vector_store in vector_stores:
cache_base = CacheBase('sqlite')
Expand All @@ -40,4 +41,4 @@ def run():


if __name__ == '__main__':
run()
run()
28 changes: 28 additions & 0 deletions gptcache/manager/vector_data/manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,9 @@

COLLECTION_NAME = "gptcache"

WEAVIATE_TIMEOUT_CONFIG = (10, 60)
WEAVIATE_STARTUP_PERIOD = 5


# pylint: disable=import-outside-toplevel
class VectorBase:
Expand Down Expand Up @@ -257,6 +260,31 @@ def get(name, **kwargs):
flush_interval_sec=flush_interval_sec,
index_params=index_params,
)
elif name == "weaviate":
from gptcache.manager.vector_data.weaviate import Weaviate

url = kwargs.get("url", None)
auth_client_secret = kwargs.get("auth_client_secret", None)
timeout_config = kwargs.get("timeout_config", WEAVIATE_TIMEOUT_CONFIG)
proxies = kwargs.get("proxies", None)
trust_env = kwargs.get("trust_env", False)
additional_headers = kwargs.get("additional_headers", None)
startup_period = kwargs.get("startup_period", WEAVIATE_STARTUP_PERIOD)
embedded_options = kwargs.get("embedded_options", None)
additional_config = kwargs.get("additional_config", None)

vector_base = Weaviate(
url=url,
auth_client_secret=auth_client_secret,
timeout_config=timeout_config,
proxies=proxies,
trust_env=trust_env,
additional_headers=additional_headers,
startup_period=startup_period,
embedded_options=embedded_options,
additional_config=additional_config,
top_k=top_k,
)
else:
raise NotFoundError("vector store", name)
return vector_base
182 changes: 182 additions & 0 deletions gptcache/manager/vector_data/weaviate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
from typing import List, Optional, Tuple, Union
import numpy as np

from gptcache.utils import import_weaviate
from gptcache.utils.log import gptcache_log
from gptcache.manager.vector_data.base import VectorBase, VectorData

import_weaviate()

from weaviate import Client
from weaviate.auth import AuthCredentials
from weaviate.config import Config
from weaviate.embedded import EmbeddedOptions
from weaviate.types import NUMBERS


class Weaviate(VectorBase):
"""
vector store: Weaviate
"""

TIMEOUT_TYPE = Union[Tuple[NUMBERS, NUMBERS], NUMBERS]

def __init__(
self,
url: Optional[str] = None,
auth_client_secret: Optional[AuthCredentials] = None,
timeout_config: TIMEOUT_TYPE = (10, 60),
proxies: Union[dict, str, None] = None,
trust_env: bool = False,
additional_headers: Optional[dict] = None,
startup_period: Optional[int] = 5,
embedded_options: Optional[EmbeddedOptions] = None,
additional_config: Optional[Config] = None,
top_k: Optional[int] = 1,
) -> None:

if url is None and embedded_options is None:
embedded_options = EmbeddedOptions()

self.client = Client(
url=url,
auth_client_secret=auth_client_secret,
timeout_config=timeout_config,
proxies=proxies,
trust_env=trust_env,
additional_headers=additional_headers,
startup_period=startup_period,
embedded_options=embedded_options,
additional_config=additional_config,
)

self._create_class()
self.top_k = top_k

def _create_class(self):
class_schema = self._get_default_class_schema()

self.class_name = class_schema.get("class")

if self.client.schema.exists(self.class_name):
gptcache_log.warning(
"The %s collection already exists, and it will be used directly.",
self.class_name,
)
else:
self.client.schema.create_class(class_schema)

@staticmethod
def _get_default_class_schema() -> dict:
return {
"class": "GPTCache",
"description": "LLM response cache",
"properties": [
{
"name": "data_id",
"dataType": ["int"],
"description": "The data-id generated by GPTCache for vectors.",
}
],
"vectorIndexConfig": {"distance": "cosine"},
}

def mul_add(self, datas: List[VectorData]):
with self.client.batch(batch_size=100, dynamic=True) as batch:
for data in datas:
properties = {
"data_id": data.id,
}

batch.add_data_object(
data_object=properties, class_name=self.class_name, vector=data.data
)

def search(self, data: np.ndarray, top_k: int = -1):
if top_k == -1:
top_k = self.top_k

result = (
self.client.query.get(class_name=self.class_name, properties=["data_id"])
.with_near_vector(content={"vector": data})
.with_additional(["distance"])
.with_limit(top_k)
.do()
)

return list(
map(
lambda x: (x["_additional"]["distance"], x["data_id"]),
result["data"]["Get"][self.class_name],
)
)

def _get_uuids(self, data_ids):
uuid_list = []

for data_id in data_ids:
res = (
self.client.query.get(
class_name=self.class_name, properties=["data_id"]
)
.with_where(
{"path": ["data_id"], "operator": "Equal", "valueInt": data_id}
)
.with_additional(["id"])
.do()
)

uuid_list.append(
res["data"]["Get"][self.class_name][0]["_additional"]["id"]
)

return uuid_list

def delete(self, ids):
uuids = self._get_uuids(ids)

for uuid in uuids:
self.client.data_object.delete(class_name=self.class_name, uuid=uuid)

def rebuild(self, ids=None):
return

def flush(self):
self.client.batch.flush()

def close(self):
self.flush()

def get_embeddings(self, data_id: int):
results = (
self.client.query.get(class_name=self.class_name, properties=["data_id"])
.with_where(
{
"path": ["data_id"],
"operator": "Equal",
"valueInt": data_id,
}
)
.with_additional(["vector"])
.with_limit(1)
.do()
)

results = results["data"]["Get"][self.class_name]

if len(results) < 1:
return None

vec_emb = np.asarray(results[0]["_additional"]["vector"], dtype="float32")
return vec_emb

def update_embeddings(self, data_id: int, emb: np.ndarray):
self.delete([data_id])

properties = {
"data_id": data_id,
}

self.client.data_object.create(
data_object=properties, class_name=self.class_name, vector=emb
)
5 changes: 5 additions & 0 deletions gptcache/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
"import_fastapi",
"import_redis",
"import_qdrant",
"import_weaviate",
]

import importlib.util
Expand Down Expand Up @@ -262,3 +263,7 @@ def import_redis():

def import_starlette():
_check_library("starlette")


def import_weaviate():
_check_library("weaviate-client")
1 change: 1 addition & 0 deletions pylint.conf
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@ disable=abstract-method,
zip-builtin-not-iterating,
missing-module-docstring,
super-init-not-called,
wrong-import-position


[REPORTS]
Expand Down
36 changes: 36 additions & 0 deletions tests/unit_tests/manager/test_weaviate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
import unittest
import numpy as np

from gptcache.manager.vector_data import VectorBase
from gptcache.manager.vector_data.base import VectorData


class TestWeaviateDB(unittest.TestCase):
def test_normal(self):
size = 1000
dim = 512
top_k = 10

db = VectorBase(
"weaviate",
top_k=top_k
)

db._create_class()
data = np.random.randn(size, dim).astype(np.float32)
db.mul_add([VectorData(id=i, data=v) for v, i in zip(data, range(size))])
self.assertEqual(len(db.search(data[0])), top_k)
db.mul_add([VectorData(id=size, data=data[0])])
ret = db.search(data[0])
self.assertIn(ret[0][1], [0, size])
self.assertIn(ret[1][1], [0, size])
db.delete([0, 1, 2, 3, 4, 5, size])
ret = db.search(data[0])
self.assertNotIn(ret[0][1], [0, size])
db.rebuild()
db.update_embeddings(6, data[7])
emb = db.get_embeddings(6)
self.assertEqual(emb.tolist(), data[7].tolist())
emb = db.get_embeddings(0)
self.assertIsNone(emb)
db.close()