forked from CUAI-CAU/Emotion_Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0a3732a1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import librosa\n", | ||
"import glob\n", | ||
"import json\n", | ||
"from pathlib import Path\n", | ||
"import numpy as np\n", | ||
"import wave\n", | ||
"import pandas as pd\n", | ||
"from pydub import AudioSegment" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "981a45be", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def find_values(id, json_repr):\n", | ||
" results = []\n", | ||
" def _decode_dict(a_dict):\n", | ||
" try:\n", | ||
" results.append(a_dict[id])\n", | ||
" except KeyError:\n", | ||
" pass\n", | ||
" return a_dict\n", | ||
" json.loads(json_repr, object_hook=_decode_dict) # Return value ignored.\n", | ||
" return results\n", | ||
"\n", | ||
"emotion_list = []\n", | ||
"paths = list(Path('/audio/').rglob('*.wav'))\n", | ||
"\n", | ||
"for k in range(len(paths)):\n", | ||
" with open('clip_'+str(3601+k)+'.json', 'r',encoding=\"UTF-8\") as f:\n", | ||
" json_data = json.load(f)\n", | ||
"\n", | ||
" json_repr = json.dumps(json_data['data'])\n", | ||
"\n", | ||
" start = find_values('script_start', json_repr)\n", | ||
" index = [start.index(x) for x in dict.fromkeys(start)]\n", | ||
" start_list = list(dict.fromkeys(start))\n", | ||
"\n", | ||
" end = find_values('script_end', json_repr)\n", | ||
" end_list = list(dict.fromkeys(end))\n", | ||
"\n", | ||
" sound = find_values('sound', json_repr)\n", | ||
" sound_list = []\n", | ||
" for m in range(len(index)):\n", | ||
" sound_list.append(sound[m])\n", | ||
"\n", | ||
" for j in range(len(sound_list)):\n", | ||
" emotion = list((sound_list[j].values()))[0]\n", | ||
" emotion_list.append(emotion)\n", | ||
" \n", | ||
" for i in range(len(start_list)):\n", | ||
" start = int(start_list[i]/30*1000) # Works in milliseconds\n", | ||
" end = int(end_list[i]/30*1000)\n", | ||
" Audio = AudioSegment.from_wav('clip_'+str(3601+k)+'.wav')\n", | ||
" newAudio = Audio[start:end]\n", | ||
" newAudio.export('clip_' + str(3601+k) + '_' + str(i) + '.wav', format=\"wav\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6032307c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"a = []\n", | ||
"for i in range(len(emotion_list)):\n", | ||
" if emotion_list[i] == 'happy':\n", | ||
" a.append(int(0))\n", | ||
" if emotion_list[i] == 'surprise':\n", | ||
" a.append(int(1))\n", | ||
" if emotion_list[i] == 'angry':\n", | ||
" a.append(int(2))\n", | ||
" if emotion_list[i] == 'sad':\n", | ||
" a.append(int(3))\n", | ||
" if emotion_list[i] == 'dislike':\n", | ||
" a.append(int(4))\n", | ||
" if emotion_list[i] == 'fear':\n", | ||
" a.append(int(5))\n", | ||
" if emotion_list[i] == 'contempt':\n", | ||
" a.append(int(6))\n", | ||
" if emotion_list[i] == 'neutral':\n", | ||
" a.append(int(7))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4916f7ea", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"label = np.array(a)\n", | ||
"label.reshape(-1,1)\n", | ||
"n_values = np.max(a) + 1\n", | ||
"oh = np.eye(n_values)[a] # one-hot\n", | ||
"np.save('C:/Users/User/Desktop/audio/label', oh)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7afdda7e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def load_audio_file(file_path):\n", | ||
" input_length = 44100*4\n", | ||
" data = librosa.core.load(file_path,sr=44100)[0] #, sr=16000\n", | ||
" if len(data)>input_length:\n", | ||
" data = data[:input_length]\n", | ||
" else:\n", | ||
" data = np.pad(data, (0, max(0, input_length - len(data))), \"constant\")\n", | ||
" return data\n", | ||
"def plot_time_series(data):\n", | ||
" fig = plt.figure(figsize=(14, 8))\n", | ||
" plt.title('Raw wave ')\n", | ||
" plt.ylabel('Amplitude')\n", | ||
" plt.plot(np.linspace(0, 4, len(data)), data)\n", | ||
" plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "11d7524a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"### Augmentation\n", | ||
"# changing pitch\n", | ||
"def pitch_change(data, sampling_rate):\n", | ||
" pitch_factor = random.uniform(0, 5)\n", | ||
" return librosa.effects.pitch_shift(data, sampling_rate, pitch_factor)\n", | ||
"\n", | ||
"# shifting\n", | ||
"def shifting(data):\n", | ||
" sft = random.randrange(5000, 10000, 1000)\n", | ||
" data_roll = np.roll(data, sft)\n", | ||
" return data_roll\n", | ||
"\n", | ||
"# changing speed\n", | ||
"def speed_change(data):\n", | ||
" speed_factor = random.uniform(0.5, 1.5)\n", | ||
" return librosa.effects.time_stretch(data, speed_factor)\n", | ||
"\n", | ||
"# white noise\n", | ||
"def white_noise(data):\n", | ||
" wn = np.random.randn(len(data))\n", | ||
" data_wn = data + 0.005*wn\n", | ||
" return data_wn" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b72c278c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def features_extractor_aug(file_name): # mfcc feature extract\n", | ||
" audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')\n", | ||
" mfccs_audio = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)\n", | ||
" mfccs_scaled_audio = np.mean(mfccs_audio.T,axis=0)\n", | ||
" return mfccs_scaled_audio" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |