Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions .buildkite/run-cpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,12 @@ docker exec cpu-test bash -c "
--ignore=tests/models/test_jamba.py \
--ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported

# Run compressed-tensor test
docker exec cpu-test bash -c "
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token"

# online inference
docker exec cpu-test bash -c "
export VLLM_CPU_KVCACHE_SPACE=10
Expand Down
18 changes: 17 additions & 1 deletion Dockerfile.cpu
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,10 @@

FROM ubuntu:22.04 AS cpu-test-1

ENV CCACHE_DIR=/root/.cache/ccache

ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache

RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
Expand All @@ -26,6 +30,19 @@ RUN --mount=type=cache,target=/root/.cache/pip \
pip install --upgrade pip && \
pip install -r requirements-build.txt

# install oneDNN
RUN git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git

RUN --mount=type=cache,target=/root/.cache/ccache \
cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC \
-DONEDNN_BUILD_DOC=OFF \
-DONEDNN_BUILD_EXAMPLES=OFF \
-DONEDNN_BUILD_TESTS=OFF \
-DONEDNN_BUILD_GRAPH=OFF \
-DONEDNN_ENABLE_WORKLOAD=INFERENCE \
-DONEDNN_ENABLE_PRIMITIVE=MATMUL && \
cmake --build ./oneDNN/build --target install --config Release

FROM cpu-test-1 AS build

WORKDIR /workspace/vllm
Expand All @@ -41,7 +58,6 @@ COPY ./ ./
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}

ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
Expand Down
18 changes: 12 additions & 6 deletions cmake/cpu_extension.cmake
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_STANDARD 17)

#
# Define environment variables for special configurations
Expand Down Expand Up @@ -83,12 +84,7 @@ endif()

message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")

list(APPEND LIBS "numa")


#
# Define extension targets
#
list(APPEND LIBS dnnl numa)

#
# _C extension
Expand All @@ -102,6 +98,16 @@ set(VLLM_EXT_SRC
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")

if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()

#
# Define extension targets
#

define_gpu_extension_target(
_C
DESTINATION vllm
Expand Down
62 changes: 60 additions & 2 deletions csrc/cpu/cpu_types_x86.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ namespace vec_op {
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
RECORD_FUNCTION(#NAME, c10::ArrayRef<c10::IValue>({}));
#define CPU_KERNEL_GUARD_OUT(NAME)
#endif

#define FORCE_INLINE __attribute__((always_inline)) inline
Expand Down Expand Up @@ -106,6 +106,12 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
explicit BF16Vec16(const FP32Vec16 &);

void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }

void save(void* ptr, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
__mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num));
_mm256_mask_storeu_epi16(ptr, mask, reg);
}
};

#ifdef __AVX512F__
Expand Down Expand Up @@ -313,8 +319,28 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
return FP32Vec16(_mm512_div_ps(reg, b.reg));
}

FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(_mm512_min_ps(max.reg, _mm512_max_ps(min.reg, reg)));
}

FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(_mm512_max_ps(reg, b.reg));
}

FP32Vec16 max(const FP32Vec16& b, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
__mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num));
return FP32Vec16(_mm512_mask_max_ps(reg, mask, reg, b.reg));
}

FP32Vec16 abs() const {
return FP32Vec16(_mm512_abs_ps(reg));
}

float reduce_sum() const { return _mm512_reduce_add_ps(reg); }

float reduce_max() const { return _mm512_reduce_max_ps(reg); }

template <int group_size> float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
Expand All @@ -323,6 +349,12 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
}

void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }

void save(float* ptr, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
__mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num));
_mm512_mask_storeu_ps(ptr, mask, reg);
}
};
#else
struct FP32Vec16 : public Vec<FP32Vec16> {
Expand Down Expand Up @@ -433,6 +465,32 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
};
#endif

#ifdef __AVX512F__
struct INT8Vec16: public Vec<INT8Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
__m128i reg;
int8_t values[VEC_ELEM_NUM];
};

__m128i reg;

explicit INT8Vec16(const FP32Vec16& vec) : reg(
_mm512_cvtepi32_epi8(_mm512_cvt_roundps_epi32(vec.reg, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))
) {}

void save(int8_t* ptr) const {
_mm_storeu_epi8(ptr, reg);
}

void save(int8_t* ptr, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
__mmask16 mask = _cvtu32_mask16(M >> (32 - elem_num));
_mm_mask_storeu_epi8(ptr, mask, reg);
}
};
#endif

template <typename T> struct VecType { using vec_type = void; };

template <typename T> using vec_t = typename VecType<T>::vec_type;
Expand Down
168 changes: 168 additions & 0 deletions csrc/cpu/dnnl_helper.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
#ifndef DNNL_HELPER_HPP
#define DNNL_HELPER_HPP

#include <c10/util/BFloat16.h>

#include "oneapi/dnnl/dnnl.hpp"

namespace {
template <typename T>
struct DNNLType {
static constexpr dnnl::memory::data_type type =
dnnl::memory::data_type::undef;
};

template <>
struct DNNLType<int8_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
};

template <>
struct DNNLType<int32_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
};

template <>
struct DNNLType<float> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
};

template <>
struct DNNLType<c10::BFloat16> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
};

template <typename T>
constexpr inline dnnl::memory::data_type get_dnnl_type() {
return DNNLType<std::decay_t<T>>::type;
}
}; // namespace

template <bool InputNoScale>
class DNNLPrimitiveHelper {
public:
// I8 input GEMM kernel (C = a_scales * A @ (b_scales * B^T) + bias)
// A: [M, K], row-major
// B: [K, N], column-major
// C: [M, N], row-major
// bias: [N], row-major, optional
// a_scales: [MS]
// b_scales: [NS]
// Note: Due to the limitation of oneDNN
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
// not supported.
template <typename OutputT, typename BiasT>
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
dnnl_dim_t K, const float* a_scales,
const float* b_scales, dnnl_dim_t MS,
dnnl_dim_t NS) {
auto&& OutputType = get_dnnl_type<OutputT>();
auto&& BiasType = get_dnnl_type<BiasT>();

dnnl::memory::desc a_md({M, K}, dnnl::memory::data_type::s8, {K, 1});
dnnl::memory::desc b_md({K, N}, dnnl::memory::data_type::s8, {1, K});
dnnl::memory::desc c_md({M, N}, OutputType, {N, 1});

dnnl::primitive_attr attr;
if constexpr (!InputNoScale) {
if (MS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_SRC, 0);
} else {
// per-token
TORCH_CHECK(false, "per-token quantization is unsupported.");
}
}

if (NS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
} else {
// per-channel
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
}

dnnl::matmul::primitive_desc matmul_pd;
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
bias_md, c_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
c_md, attr);
}
dnnl::matmul matmul(matmul_pd);

auto& engine = default_engine();

dnnl::memory a_m(a_md, engine, (void*)a);
dnnl::memory b_m(b_md, engine, (void*)b);
dnnl::memory c_m(c_md, engine, (void*)c);
dnnl::memory a_scales_m({{MS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)a_scales);
dnnl::memory b_scales_m({{NS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)b_scales);

auto& stream = default_stream();
if constexpr (InputNoScale) {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
} else {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
}
stream.wait();
}

private:
static dnnl::engine& default_engine() {
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
return engine;
}

static dnnl::stream& default_stream() {
static dnnl::stream stream(default_engine());
return stream;
}
};

#endif
Loading