-
-
Notifications
You must be signed in to change notification settings - Fork 7.8k
[Feature]Add async tensor parallelism using compilation pass #17882
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
13cd0bd
Add async tp pass
cascade812 b9fa99f
update test
cascade812 623862d
lint
cascade812 4734bfe
address comments
cascade812 3b29755
remove used code
cascade812 882685a
update test
cascade812 c05a9a4
Merge remote-tracking branch 'origin' into asynctp
cascade812 b749a91
fix test
cascade812 4e1fc6c
Merge remote-tracking branch 'origin' into asynctp
cascade812 8e7d4b8
Merge remote-tracking branch 'origin' into asynctp
cascade812 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
|
||
import pytest | ||
import torch | ||
|
||
import vllm.envs as envs | ||
from vllm.compilation.collective_fusion import AsyncTPPass | ||
from vllm.config import (CompilationConfig, DeviceConfig, ModelConfig, | ||
PassConfig, VllmConfig) | ||
from vllm.distributed import (tensor_model_parallel_all_gather, | ||
tensor_model_parallel_reduce_scatter) | ||
from vllm.distributed.parallel_state import (init_distributed_environment, | ||
initialize_model_parallel) | ||
from vllm.platforms import current_platform | ||
from vllm.utils import update_environment_variables | ||
|
||
from ..models.registry import HF_EXAMPLE_MODELS | ||
from ..utils import (compare_two_settings, create_new_process_for_each_test, | ||
multi_gpu_test) | ||
from .backend import TestBackend | ||
|
||
prompts = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
|
||
|
||
class TestMMRSModel(torch.nn.Module): | ||
|
||
def __init__(self, hidden_size=16): | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
self.gate_proj = torch.nn.Parameter(torch.empty( | ||
(self.hidden_size * 2, hidden_size)), | ||
requires_grad=False) | ||
# Initialize weights | ||
torch.nn.init.normal_(self.gate_proj, std=0.02) | ||
|
||
def forward(self, hidden_states): | ||
""" | ||
Forward pass implementing the mm + reduce scatter in the FX graph | ||
|
||
""" | ||
# Reshape input | ||
view = hidden_states.reshape(-1, self.hidden_size) | ||
|
||
# matrix multiplication | ||
permute = self.gate_proj.permute(1, 0) | ||
mm = torch.mm(view, permute) | ||
reduce_scatter = tensor_model_parallel_reduce_scatter(mm, dim=0) | ||
return reduce_scatter | ||
|
||
def ops_in_model_before(self): | ||
return [torch.ops.vllm.reduce_scatter.default] | ||
|
||
def ops_in_model_after(self): | ||
return [torch.ops.symm_mem.fused_matmul_reduce_scatter.default] | ||
|
||
|
||
class TestAGMMModel(torch.nn.Module): | ||
|
||
def __init__(self, hidden_size=16): | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
self.weight = torch.nn.Parameter(torch.empty( | ||
(hidden_size, hidden_size)), | ||
requires_grad=False) | ||
# Initialize weights | ||
torch.nn.init.normal_(self.weight, std=0.02) | ||
|
||
def forward(self, hidden_states): | ||
""" | ||
Forward pass implementing the mm + all gather in the FX graph | ||
""" | ||
# Reshape input | ||
view = hidden_states.reshape(-1, self.hidden_size) | ||
all_gather = tensor_model_parallel_all_gather(view, dim=0) | ||
permute = self.weight.permute(1, 0) | ||
mm = torch.mm(all_gather, permute) | ||
return mm | ||
|
||
def ops_in_model_before(self): | ||
return [torch.ops.vllm.all_gather.default] | ||
|
||
def ops_in_model_after(self): | ||
return [torch.ops.symm_mem.fused_all_gather_matmul.default] | ||
|
||
|
||
@multi_gpu_test(num_gpus=2) | ||
@pytest.mark.parametrize("test_model", [TestMMRSModel, TestAGMMModel]) | ||
@pytest.mark.parametrize("batch_size", [8]) | ||
@pytest.mark.parametrize("seq_len", [16]) | ||
@pytest.mark.parametrize("hidden_size", [16]) | ||
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) | ||
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], | ||
reason="Only test on CUDA") | ||
def test_async_tp_pass_replace(test_model: str, batch_size: int, seq_len: int, | ||
hidden_size: int, dtype: torch.dtype): | ||
num_processes = 2 | ||
|
||
def run_torch_spawn(fn, nprocs): | ||
# need to use torch.mp.spawn otherwise will have problems with | ||
# torch.distributed and cuda | ||
torch.multiprocessing.spawn(fn, | ||
args=(num_processes, test_model, | ||
batch_size, seq_len, hidden_size, | ||
dtype), | ||
nprocs=nprocs) | ||
|
||
run_torch_spawn(async_tp_pass_on_test_model, num_processes) | ||
|
||
|
||
def async_tp_pass_on_test_model(local_rank: int, world_size: int, | ||
test_model_cls: torch.nn.Module, | ||
batch_size: int, seq_len: int, | ||
hidden_size: int, dtype: torch.dtype): | ||
current_platform.seed_everything(0) | ||
|
||
device = torch.device(f"cuda:{local_rank}") | ||
torch.cuda.set_device(device) | ||
torch.set_default_device(device) | ||
torch.set_default_dtype(dtype) | ||
|
||
update_environment_variables({ | ||
'RANK': str(local_rank), | ||
'LOCAL_RANK': str(local_rank), | ||
'WORLD_SIZE': str(world_size), | ||
'MASTER_ADDR': 'localhost', | ||
'MASTER_PORT': '12345', | ||
}) | ||
|
||
# initialize distributed | ||
init_distributed_environment() | ||
initialize_model_parallel(tensor_model_parallel_size=world_size) | ||
|
||
# configure vllm config for SequenceParallelismPass | ||
vllm_config = VllmConfig() | ||
vllm_config.compilation_config = CompilationConfig(pass_config=PassConfig( | ||
enable_async_tp=True, ), ) | ||
vllm_config.device_config = DeviceConfig(device=torch.device("cuda")) | ||
|
||
# this is a fake model name to construct the model config | ||
# in the vllm_config, it's not really used. | ||
model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e" | ||
vllm_config.model_config = ModelConfig(model=model_name, | ||
task="auto", | ||
tokenizer=model_name, | ||
tokenizer_mode="auto", | ||
trust_remote_code=True, | ||
dtype=dtype, | ||
seed=42) | ||
|
||
async_tp_pass = AsyncTPPass(vllm_config) | ||
backend = TestBackend(async_tp_pass) | ||
|
||
model = test_model_cls(hidden_size) | ||
|
||
hidden_states = torch.randn((batch_size * seq_len, hidden_size), | ||
dtype=dtype, | ||
requires_grad=False) | ||
|
||
compiled_model = torch.compile(model, backend=backend) | ||
compiled_model(hidden_states) | ||
|
||
# In pre-nodes, all gather or reduce scatter should exist, | ||
# fused_matmul_reduce_scatter or fused_all_gather_matmul should not | ||
backend.check_before_ops(model.ops_in_model_before(), | ||
ops_fully_replaced=False) | ||
|
||
# In post-nodes, fused_matmul_reduce_scatter or \ | ||
# fused_all_gather_matmul should exist | ||
backend.check_after_ops(model.ops_in_model_after()) | ||
|
||
|
||
@create_new_process_for_each_test() | ||
@pytest.mark.parametrize("model_id", ["meta-llama/Llama-3.2-1B-Instruct"]) | ||
@pytest.mark.parametrize("tp_size", [2]) | ||
@pytest.mark.parametrize("async_tp_enabled", [True]) | ||
@pytest.mark.parametrize("distributed_backend", ["mp"]) | ||
@pytest.mark.parametrize("eager_mode", [False, True]) | ||
def test_async_tp_pass_correctness( | ||
model_id: str, | ||
tp_size: int, | ||
async_tp_enabled: bool, | ||
distributed_backend: str, | ||
eager_mode: bool, | ||
num_gpus_available: int, | ||
): | ||
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id) | ||
model_info.check_transformers_version(on_fail="skip") | ||
model_info.check_available_online(on_fail="skip") | ||
|
||
pp_size = 1 | ||
if num_gpus_available < tp_size: | ||
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs") | ||
|
||
common_args = [ | ||
"--dtype", | ||
"bfloat16", | ||
"--max-model-len", | ||
"2048", | ||
"--max-num-seqs", | ||
"8", | ||
] | ||
if eager_mode: | ||
common_args.append("--enforce-eager") | ||
|
||
compilation_config = { | ||
'level': 3, | ||
'compile_sizes': [2, 4, 8], | ||
'splitting_ops': [], | ||
'pass_config': { | ||
'enable_async_tp': async_tp_enabled | ||
}, | ||
} | ||
|
||
async_tp_env = tp_env = { | ||
"VLLM_USE_V1": "1", | ||
} | ||
|
||
aysnc_tp_args = [ | ||
*common_args, | ||
"--tensor-parallel-size", | ||
str(tp_size), | ||
"--distributed-executor-backend", | ||
distributed_backend, | ||
"--compilation_config", | ||
json.dumps(compilation_config), | ||
] | ||
|
||
tp_args = [ | ||
*common_args, | ||
"--tensor-parallel-size", | ||
str(tp_size), | ||
"--distributed-executor-backend", | ||
"mp", | ||
] | ||
|
||
compare_two_settings(model_id, | ||
aysnc_tp_args, | ||
tp_args, | ||
async_tp_env, | ||
tp_env, | ||
method="generate") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.