[Bug]: Llama3.1 casting torch.bfloat16 to torch.float16 #7561
Closed
Description
Your current environment
Running on distributed environment using apptainer version of vllm openai container v0.5.4
🐛 Describe the bug
I've downloaded Llama 3.1 8B Instruct from Huggingface and am attempting to host using Ray and vLLM.
Examining the snapshot's config.json
, I can confirm that the underlying torch_dtype
is bfloat16
.
{
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.42.3",
"use_cache": true,
"vocab_size": 128256
}
In addition, I'm passing --dtype=bfloat16
to vllm serve
.
vllm serve "/root/.cache/huggingface/hub/models--${SNAPSHOT_DIR}/snapshots/$SNAPSHOT" \
--tensor-parallel-size=4 \
--pipeline-parallel-size=1 \
--distributed-executor-backend=ray \
--dtype=bfloat16
However, for some reason, I'm seeing this log line:
WARNING 08-15 16:32:35 config.py:1454] Casting torch.bfloat16 to torch.float16.
It appears to be from this line I think?
Line 1514 in 9c1f78d
Not sure what's happening here, but I want to ensure we're not unnecessarily casting (running this on A100 40GBs which are correctly recognized and used so it's not a GPU compatibility issue).