Skip to content

[Bug]: Can not run quantized models after #20694 #20832

@JaheimLee

Description

@JaheimLee

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 20.04.6 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-2ubuntu1~20.04) 11.4.0
Clang version                : 10.0.0-4ubuntu1 
CMake version                : version 4.0.3
Libc version                 : glibc-2.31

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] (64-bit runtime)
Python platform              : Linux-5.13.0-30-generic-x86_64-with-glibc2.31

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.1.66
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090
GPU 4: NVIDIA GeForce RTX 3090
GPU 5: NVIDIA GeForce RTX 3090
GPU 6: NVIDIA GeForce RTX 3090
GPU 7: NVIDIA GeForce RTX 3090

Nvidia driver version        : 530.30.02
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 48 bits virtual
CPU(s):                          56
On-line CPU(s) list:             0-55
Thread(s) per core:              2
Core(s) per socket:              14
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           79
Model name:                      Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
Stepping:                        1
CPU MHz:                         1200.000
CPU max MHz:                     3300.0000
CPU min MHz:                     1200.0000
BogoMIPS:                        4799.70
Virtualization:                  VT-x
L1d cache:                       896 KiB
L1i cache:                       896 KiB
L2 cache:                        7 MiB
L3 cache:                        70 MiB
NUMA node0 CPU(s):               0-13,28-41
NUMA node1 CPU(s):               14-27,42-55
Vulnerability Itlb multihit:     KVM: Mitigation: VMX disabled
Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds:               Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Full generic retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Mitigation; Clear CPU buffers; SMT vulnerable
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap intel_pt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts md_clear flush_l1d

==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-cufile-cu12==1.13.0.11
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvshmem-cu12==3.3.9
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] onnx==1.18.0
[pip3] onnx-ir==0.1.4
[pip3] onnxruntime-gpu==1.22.0
[pip3] onnxscript==0.3.1
[pip3] open_clip_torch==2.32.0
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.0
[pip3] sentence-transformers==5.0.0
[pip3] torch==2.7.0+cu128
[pip3] torchao==0.11.0
[pip3] torchaudio==2.7.0+cu128
[pip3] torchdata==0.11.0
[pip3] torchtitan==0.1.0
[pip3] torchvision==0.22.0+cu128
[pip3] transformers==4.53.2
[pip3] triton==3.3.0
[conda] mkl                       2024.2.2            ha957f24_16    conda-forge
[conda] mkl-devel                 2024.2.2            ha770c72_16    conda-forge
[conda] mkl-include               2024.2.2            ha957f24_16    conda-forge
[conda] mkl-service               2.4.2           py310h22455d7_0    conda-forge
[conda] mkl_fft                   1.3.11          py310h5bcb89a_0    conda-forge
[conda] mkl_random                1.2.8           py310hcacb51e_1    conda-forge
[conda] numpy                     2.1.3           py310heeff2f4_0  
[conda] numpy-base                2.1.3           py310h8a23956_0  
[conda] nvidia-ml-py              12.535.108               pypi_0    pypi
[conda] transformers              4.53.1                   pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.2rc2.dev176+g9907fc449 (git sha: 9907fc449)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity
GPU0     X      PIX     PHB     PHB     SYS     SYS     SYS     SYS     0-13,28-41      0
GPU1    PIX      X      PHB     PHB     SYS     SYS     SYS     SYS     0-13,28-41      0
GPU2    PHB     PHB      X      PIX     SYS     SYS     SYS     SYS     0-13,28-41      0
GPU3    PHB     PHB     PIX      X      SYS     SYS     SYS     SYS     0-13,28-41      0
GPU4    SYS     SYS     SYS     SYS      X      PIX     PHB     PHB     14-27,42-55     1
GPU5    SYS     SYS     SYS     SYS     PIX      X      PHB     PHB     14-27,42-55     1
GPU6    SYS     SYS     SYS     SYS     PHB     PHB      X      PIX     14-27,42-55     1
GPU7    SYS     SYS     SYS     SYS     PHB     PHB     PIX      X      14-27,42-55     1

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:/usr/local/cuda-12.1/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Cannot run quantized models(Qwen3-32B-AWQ) on my 3090 after pr #20694 @mgoin

Process EngineCore_0:
Traceback (most recent call last):
  File "/home/mosh/.local/share/uv/python/cpython-3.12.9-linux-x86_64-gnu/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/home/mosh/.local/share/uv/python/cpython-3.12.9-linux-x86_64-gnu/lib/python3.12/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 590, in run_engine_core
    raise e
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 577, in run_engine_core
    engine_core = EngineCoreProc(*args, **kwargs)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 404, in __init__
    super().__init__(vllm_config, executor_class, log_stats,
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 75, in __init__
    self.model_executor = executor_class(vllm_config)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 53, in __init__
    self._init_executor()
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 48, in _init_executor
    self.collective_rpc("load_model")
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 57, in collective_rpc
    answer = run_method(self.driver_worker, method, args, kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/utils/__init__.py", line 2943, in run_method
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 194, in load_model
    self.model_runner.load_model()
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1738, in load_model
    self.model = model_loader.load_model(
                 ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/base_loader.py", line 42, in load_model
    process_weights_after_loading(model, model_config, target_device)
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/model_executor/model_loader/utils.py", line 113, in process_weights_after_loading
    quant_method.process_weights_after_loading(module)
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/awq_marlin.py", line 283, in process_weights_after_loading
    marlin_scales = marlin_permute_scales(
                    ^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/utils/marlin_utils.py", line 256, in marlin_permute_scales
    s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^
RuntimeError: CUDA error: invalid resource handle
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

[rank0]:[W712 01:41:12.596494424 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
Traceback (most recent call last):
  File "/data/lijinghui/uv_projects/LLM/chat_xiaoai.py", line 1387, in <module>
    engine = initialize_engine()
             ^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/LLM/chat_xiaoai.py", line 942, in initialize_engine
    return AsyncLLMEngine.from_engine_args(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/async_llm.py", line 189, in from_engine_args
    return cls(
           ^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/async_llm.py", line 124, in __init__
    self.engine_core = EngineCoreClient.make_async_mp_client(
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 96, in make_async_mp_client
    return AsyncMPClient(*client_args)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 666, in __init__
    super().__init__(
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 403, in __init__
    with launch_core_engines(vllm_config, executor_class,
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/mosh/.local/share/uv/python/cpython-3.12.9-linux-x86_64-gnu/lib/python3.12/contextlib.py", line 144, in __exit__
    next(self.gen)
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/utils.py", line 444, in launch_core_engines
    wait_for_engine_startup(
  File "/data/lijinghui/uv_projects/.venv/lib/python3.12/site-packages/vllm/v1/engine/utils.py", line 494, in wait_for_engine_startup
    raise RuntimeError("Engine core initialization failed. "
RuntimeError: Engine core initialization failed. See root cause above. Failed core proc(s): {}

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions