Skip to content

txt/aa24

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


 home :: syllabus :: groups :: © 2024, Tim Menzies

Lectures Timetable
submit@noon

This is a project-based class where students will use any scripting language they like to build and extend their own AI tools for software engineering. 500-level students will work in groups of 3; 700-level students will work in groups of 1.

Here, we discuss how “AI” is different for SE:

  • The data sets are different (far more repetitive structures, far more unlabelled data, far more variance in the labels);
  • The problems explored are different (e.g. software configuration, software project estimation).
  • The goals are different (more managerial level, more uncertainty management, more emphasis on explainability and repeatability).
  • The methods are different (more emphasis on the scripting and continuous development and operations).
  • The results are different (many domains are controllable via surprisingly small theories).
  • Hence the experimental and statistical methods are different.

Topics:

  • Management of AI software projects.
  • AI,SE and ethics.
  • AI methods as they relate to SE: explainable AI; classification, clustering, multi-objective optimization (for non-continuous models); semi-supervised learning, theorem proving, generative methods.
  • Experimental methods for SE and AI: statistics, experimental rigs, visualizations.
  • AI application areas in SE: current methods, statistical methods, latest results in areas such as software configuration, defect prediction, effort estimation, project planning, Github issue close time prediction, bad smell prediction, cloud compute management, bad smell detection, static code warning detection, etc.
Jan09 : AI+SE=Ez
Jan11 : Choice
Jan16 : Bayes+Nums
Jan23 : Management
Jan30 : Landscape #1
Feb01 : Landscape #2
Feb06 :  no class
Feb08 : Stats
Feb13 : no class
Feb15 : Xplan1;Xplan2; Ranges; Rules
Feb20 : 
Feb22 : 
Feb27 : 
Feb29 : 
Mar05 : Enough;
Mar07 : 
Mar12 :  break
Mar14 :  break
Mar19 : 
Mar21 : Other.optimizers;
Mar26 : Mutate+Inference;
Mar28 : Few-shot;
Apr02 : Theorem provers;
Apr04 : 
Apr09 : 
Apr11 : 
Apr16 : 
Apr18 : 
Apr23 : no class
May3 : Grades posted
Jan16 : Hw2
Jan23 : Hw3
Jan30 : Hw4
Feb06 : Hw5
Feb13 :  wellness day
Feb27 : Hw6
Mar05 : Hw7
Mar12 :  break
Mar19 :  midterm
Mar26 :  Hw8
Apr02 :  Hw9
Apr09 :  -
Apr16 :  -
Apr22 :  monday, Project;details
May3 :  grades posted

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published