Skip to content

Commit

Permalink
Update NGC versions post-22.12 release (#5190)
Browse files Browse the repository at this point in the history
* Update README and versions for 22.12 branch

* Windows Dockerfile update (#5151)

* Windows Dockerfile update

* Modify Dockerfile.win10.min

* Update Windows dockerfile (#5153)

* Update NGC versions post-22.12 release
  • Loading branch information
mc-nv authored Dec 21, 2022
1 parent e4e25d1 commit 17a7e0d
Show file tree
Hide file tree
Showing 23 changed files with 57 additions and 57 deletions.
2 changes: 1 addition & 1 deletion Dockerfile.sdk
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
#

# Base image on the minimum Triton container
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:22.11-py3-min
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:22.12-py3-min

ARG TRITON_CLIENT_REPO_SUBDIR=clientrepo
ARG TRITON_COMMON_REPO_TAG=main
Expand Down
16 changes: 8 additions & 8 deletions Dockerfile.win10.min
Original file line number Diff line number Diff line change
Expand Up @@ -100,27 +100,27 @@ ARG TENSORRT_ZIP="TensorRT-${TENSORRT_VERSION}.Windows10.x86_64.cuda-11.8.cudnn8

LABEL TENSORRT_VERSION="${TENSORRT_VERSION}"

ARG CUDNN_VERSION=8.7.0.80
ARG CUDNN_VERSION=8.7.0.84
ARG CUDNN_ZIP=cudnn-windows-x86_64-${CUDNN_VERSION}_cuda11-archive.zip

LABEL CUDNN_VERSION="${CUDNN_VERSION}"

ADD https://developer.download.nvidia.com/compute/cuda/${CUDA_VERSION}/network_installers/cuda_${CUDA_VERSION}_windows_network.exe cuda_${CUDA_VERSION}_windows_network.exe
COPY ${CUDNN_ZIP} .
COPY ${TENSORRT_ZIP} .
COPY ${CUDNN_ZIP} /tmp/${CUDNN_ZIP}
COPY ${TENSORRT_ZIP} /tmp/${TENSORRT_ZIP}

LABEL CUDA_VERSION="${CUDA_VERSION}"

RUN unzip %TENSORRT_ZIP%
RUN move TensorRT-%TENSORRT_VERSION% TensorRT
RUN unzip /tmp/%TENSORRT_ZIP%
RUN move TensorRT-* TensorRT
ENV TRT_VERSION ${TENSORRT_VERSION}

RUN cuda_%CUDA_VERSION%_windows_network.exe -s %CUDA_PACKAGES%

RUN unzip %CUDNN_ZIP%
RUN move %CUDNN_DIR% cudnn
RUN unzip /tmp/%CUDNN_ZIP%
RUN move cudnn-* cudnn
RUN copy cudnn\bin\cudnn*.dll "%CUDA_INSTALL_ROOT_WP%\bin\."
RUN copy cudnn\lib\cudnn*.lib "%CUDA_INSTALL_ROOT_WP%\lib\x64\."
RUN copy cudnn\lib\x64\cudnn*.lib "%CUDA_INSTALL_ROOT_WP%\lib\x64\."
RUN copy cudnn\include\cudnn*.h "%CUDA_INSTALL_ROOT_WP%\include\."
ENV CUDNN_VERSION ${CUDNN_VERSION}

Expand Down
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@

**LATEST RELEASE: You are currently on the main branch which tracks
under-development progress towards the next release. The current release is
version [2.28.0](https://github.com/triton-inference-server/server/tree/r22.11)
and corresponds to the 22.11 container release on
version [2.29.0](https://github.com/triton-inference-server/server/tree/r22.12)
and corresponds to the 22.12 container release on
[NVIDIA GPU Cloud (NGC)](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver).**

----
Expand Down Expand Up @@ -84,16 +84,16 @@ Inference Server with the

```bash
# Step 1: Create the example model repository
git clone -b r22.11 https://github.com/triton-inference-server/server.git
git clone -b r22.12 https://github.com/triton-inference-server/server.git
cd server/docs/examples
./fetch_models.sh

# Step 2: Launch triton from the NGC Triton container
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:22.11-py3 tritonserver --model-repository=/models
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:22.12-py3 tritonserver --model-repository=/models

# Step 3: Sending an Inference Request
# In a separate console, launch the image_client example from the NGC Triton SDK container
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:22.11-py3-sdk
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:22.12-py3-sdk
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg

# Inference should return the following
Expand Down
2 changes: 1 addition & 1 deletion TRITON_VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
2.29.0dev
2.30.0dev
6 changes: 3 additions & 3 deletions build.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,9 +67,9 @@
# incorrectly load the other version of the openvino libraries.
#
TRITON_VERSION_MAP = {
'2.29.0dev': (
'22.12dev', # triton container
'22.11', # upstream container
'2.30.0dev': (
'23.01dev', # triton container
'22.12', # upstream container
'1.13.1', # ORT
'2022.1.0', # ORT OpenVINO
'2022.1.0', # Standalone OpenVINO
Expand Down
2 changes: 1 addition & 1 deletion deploy/aws/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:22.11-py3
imageName: nvcr.io/nvidia/tritonserver:22.12-py3
pullPolicy: IfNotPresent
modelRepositoryPath: s3://triton-inference-server-repository/model_repository
numGpus: 1
Expand Down
2 changes: 1 addition & 1 deletion deploy/fleetcommand/Chart.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@

apiVersion: v1
# appVersion is the Triton version; update when changing release
appVersion: "2.28.0"
appVersion: "2.29.0"
description: Triton Inference Server (Fleet Command)
name: triton-inference-server
# version is the Chart version; update when changing anything in the chart
Expand Down
6 changes: 3 additions & 3 deletions deploy/fleetcommand/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:22.11-py3
imageName: nvcr.io/nvidia/tritonserver:22.12-py3
pullPolicy: IfNotPresent
numGpus: 1
serverCommand: tritonserver
Expand All @@ -46,13 +46,13 @@ image:
# Model Control Mode (Optional, default: none)
#
# To set model control mode, uncomment and configure below
# See https://github.com/triton-inference-server/server/blob/r22.11/docs/model_management.md
# See https://github.com/triton-inference-server/server/blob/r22.12/docs/model_management.md
# for more details
#- --model-control-mode=explicit|poll|none
#
# Additional server args
#
# see https://github.com/triton-inference-server/server/blob/r22.11/README.md
# see https://github.com/triton-inference-server/server/blob/r22.12/README.md
# for more details

service:
Expand Down
2 changes: 1 addition & 1 deletion deploy/gcp/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
replicaCount: 1

image:
imageName: nvcr.io/nvidia/tritonserver:22.11-py3
imageName: nvcr.io/nvidia/tritonserver:22.12-py3
pullPolicy: IfNotPresent
modelRepositoryPath: gs://triton-inference-server-repository/model_repository
numGpus: 1
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ metadata:
namespace: default
spec:
containers:
- image: nvcr.io/nvidia/tritonserver:22.11-py3-sdk
- image: nvcr.io/nvidia/tritonserver:22.12-py3-sdk
imagePullPolicy: Always
name: nv-triton-client
securityContext:
Expand Down
6 changes: 3 additions & 3 deletions deploy/gke-marketplace-app/server-deployer/build_and_push.sh
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@

export REGISTRY=gcr.io/$(gcloud config get-value project | tr ':' '/')
export APP_NAME=tritonserver
export MAJOR_VERSION=2.28
export MINOR_VERSION=2.28.0
export NGC_VERSION=22.11-py3
export MAJOR_VERSION=2.29
export MINOR_VERSION=2.29.0
export NGC_VERSION=22.12-py3

docker pull nvcr.io/nvidia/$APP_NAME:$NGC_VERSION

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

apiVersion: v1
appVersion: "2.28"
appVersion: "2.29"
description: Triton Inference Server
name: triton-inference-server
version: 2.28.0
version: 2.29.0
Original file line number Diff line number Diff line change
Expand Up @@ -31,14 +31,14 @@ maxReplicaCount: 3
tritonProtocol: HTTP
# HPA GPU utilization autoscaling target
HPATargetAverageValue: 85
modelRepositoryPath: gs://triton_sample_models/22_11
publishedVersion: '2.28.0'
modelRepositoryPath: gs://triton_sample_models/22_12
publishedVersion: '2.29.0'
gcpMarketplace: true

image:
registry: gcr.io
repository: nvidia-ngc-public/tritonserver
tag: 22.11-py3
tag: 22.12-py3
pullPolicy: IfNotPresent
# modify the model repository here to match your GCP storage bucket
numGpus: 1
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
x-google-marketplace:
schemaVersion: v2
applicationApiVersion: v1beta1
publishedVersion: '2.28.0'
publishedVersion: '2.29.0'
publishedVersionMetadata:
releaseNote: >-
Initial release.
Expand Down Expand Up @@ -89,7 +89,7 @@ properties:
modelRepositoryPath:
type: string
title: Bucket where models are stored. Please make sure the user/service account to create the GKE app has permission to this GCS bucket. Read Triton documentation on configs and formatting details, supporting TensorRT, TensorFlow, Pytorch, Onnx ... etc.
default: gs://triton_sample_models/22_11
default: gs://triton_sample_models/22_12
image.ldPreloadPath:
type: string
title: Leave this empty by default. Triton allows users to create custom layers for backend such as TensorRT plugin or Tensorflow custom ops, the compiled shared library must be provided via LD_PRELOAD environment variable.
Expand Down
4 changes: 2 additions & 2 deletions deploy/gke-marketplace-app/server-deployer/schema.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
x-google-marketplace:
schemaVersion: v2
applicationApiVersion: v1beta1
publishedVersion: '2.28.0'
publishedVersion: '2.29.0'
publishedVersionMetadata:
releaseNote: >-
Initial release.
Expand Down Expand Up @@ -89,7 +89,7 @@ properties:
modelRepositoryPath:
type: string
title: Bucket where models are stored. Please make sure the user/service account to create the GKE app has permission to this GCS bucket. Read Triton documentation on configs and formatting details, supporting TensorRT, TensorFlow, Pytorch, Onnx ... etc.
default: gs://triton_sample_models/22_11
default: gs://triton_sample_models/22_12
image.ldPreloadPath:
type: string
title: Leave this empty by default. Triton allows users to create custom layers for backend such as TensorRT plugin or Tensorflow custom ops, the compiled shared library must be provided via LD_PRELOAD environment variable.
Expand Down
6 changes: 3 additions & 3 deletions docs/customization_guide/build.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ $ ./build.py ... --repo-tag=common:<container tag> --repo-tag=core:<container ta

If you are building on a release branch then `<container tag>` will
default to the branch name. For example, if you are building on the
r22.11 branch, `<container tag>` will default to r22.11. If you are
r22.12 branch, `<container tag>` will default to r22.12. If you are
building on any other branch (including the *main* branch) then
`<container tag>` will default to "main". Therefore, you typically do
not need to provide `<container tag>` at all (nor the preceding
Expand Down Expand Up @@ -334,8 +334,8 @@ python build.py --cmake-dir=<path/to/repo>/build --build-dir=/tmp/citritonbuild
If you are building on *main* branch then '<container tag>' will
default to "main". If you are building on a release branch then
'<container tag>' will default to the branch name. For example, if you
are building on the r22.11 branch, '<container tag>' will default to
r22.11. Therefore, you typically do not need to provide '<container
are building on the r22.12 branch, '<container tag>' will default to
r22.12. Therefore, you typically do not need to provide '<container
tag>' at all (nor the preceding colon). You can use a different
'<container tag>' for a component to instead use the corresponding
branch/tag in the build. For example, if you have a branch called
Expand Down
16 changes: 8 additions & 8 deletions docs/customization_guide/compose.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,8 @@ from source to get more exact customization.
The `compose.py` script can be found in the [server repository](https://github.com/triton-inference-server/server).
Simply clone the repository and run `compose.py` to create a custom container.
Note: Created container version will depend on the branch that was cloned.
For example branch [r22.11](https://github.com/triton-inference-server/server/tree/r22.11)
should be used to create a image based on the NGC 22.11 Triton release.
For example branch [r22.12](https://github.com/triton-inference-server/server/tree/r22.12)
should be used to create a image based on the NGC 22.12 Triton release.

`compose.py` provides `--backend`, `--repoagent` options that allow you to
specify which backends and repository agents to include in the custom image.
Expand All @@ -62,7 +62,7 @@ will provide a container `tritonserver` locally. You can access the container wi
$ docker run -it tritonserver:latest
```

Note: If `compose.py` is run on release versions `r22.11` and earlier,
Note: If `compose.py` is run on release versions `r22.12` and earlier,
the resulting container will have DCGM version 2.2.3 installed.
This may result in different GPU statistic reporting behavior.

Expand All @@ -76,19 +76,19 @@ For example, running
```
python3 compose.py --backend tensorflow1 --repoagent checksum
```
on branch [r22.11](https://github.com/triton-inference-server/server/tree/r22.11) pulls:
- `min` container `nvcr.io/nvidia/tritonserver:22.11-py3-min`
- `full` container `nvcr.io/nvidia/tritonserver:22.11-py3`
on branch [r22.12](https://github.com/triton-inference-server/server/tree/r22.12) pulls:
- `min` container `nvcr.io/nvidia/tritonserver:22.12-py3-min`
- `full` container `nvcr.io/nvidia/tritonserver:22.12-py3`

Alternatively, users can specify the version of Triton container to pull from any branch by either:
1. Adding flag `--container-version <container version>` to branch
```
python3 compose.py --backend tensorflow1 --repoagent checksum --container-version 22.11
python3 compose.py --backend tensorflow1 --repoagent checksum --container-version 22.12
```
2. Specifying `--image min,<min container image name> --image full,<full container image name>`.
The user is responsible for specifying compatible `min` and `full` containers.
```
python3 compose.py --backend tensorflow1 --repoagent checksum --image min,nvcr.io/nvidia/tritonserver:22.11-py3-min --image full,nvcr.io/nvidia/tritonserver:22.11-py3
python3 compose.py --backend tensorflow1 --repoagent checksum --image min,nvcr.io/nvidia/tritonserver:22.12-py3-min --image full,nvcr.io/nvidia/tritonserver:22.12-py3
```
Method 1 and 2 will result in the same composed container. Furthermore, `--image` flag overrides the `--container-version` flag when both are specified.

Expand Down
2 changes: 1 addition & 1 deletion docs/customization_guide/test.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ $ ./gen_qa_custom_ops
```

This will create multiple model repositories in /tmp/<version>/qa_*
(for example /tmp/22.11/qa_model_repository). The TensorRT models
(for example /tmp/22.12/qa_model_repository). The TensorRT models
will be created for the GPU on the system that CUDA considers device 0
(zero). If you have multiple GPUs on your system see the documentation
in the scripts for how to target a specific GPU.
Expand Down
6 changes: 3 additions & 3 deletions docs/user_guide/custom_operations.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ simple way to ensure you are using the correct version of TensorRT is
to use the [NGC TensorRT
container](https://ngc.nvidia.com/catalog/containers/nvidia:tensorrt)
corresponding to the Triton container. For example, if you are using
the 22.11 version of Triton, use the 22.11 version of the TensorRT
the 22.12 version of Triton, use the 22.12 version of the TensorRT
container.

## TensorFlow
Expand Down Expand Up @@ -123,7 +123,7 @@ simple way to ensure you are using the correct version of TensorFlow
is to use the [NGC TensorFlow
container](https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow)
corresponding to the Triton container. For example, if you are using
the 22.11 version of Triton, use the 22.11 version of the TensorFlow
the 22.12 version of Triton, use the 22.12 version of the TensorFlow
container.
## PyTorch
Expand Down Expand Up @@ -167,7 +167,7 @@ simple way to ensure you are using the correct version of PyTorch is
to use the [NGC PyTorch
container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch)
corresponding to the Triton container. For example, if you are using
the 22.11 version of Triton, use the 22.11 version of the PyTorch
the 22.12 version of Triton, use the 22.12 version of the PyTorch
container.
## ONNX
Expand Down
4 changes: 2 additions & 2 deletions docs/user_guide/performance_tuning.md
Original file line number Diff line number Diff line change
Expand Up @@ -150,10 +150,10 @@ These containers can be started interactively instead, but for the sake of demon

```bash
# Start server container in the background
docker run -d --gpus=all --network=host -v $PWD:/mnt --name triton-server nvcr.io/nvidia/tritonserver:22.11-py3
docker run -d --gpus=all --network=host -v $PWD:/mnt --name triton-server nvcr.io/nvidia/tritonserver:22.12-py3

# Start client container in the background
docker run -d --gpus=all --network=host -v $PWD:/mnt --name triton-client nvcr.io/nvidia/tritonserver:22.11-py3-sdk
docker run -d --gpus=all --network=host -v $PWD:/mnt --name triton-client nvcr.io/nvidia/tritonserver:22.12-py3-sdk
```

> **Note**
Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_qa_custom_ops
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
##
############################################################################

TRITON_VERSION=${TRITON_VERSION:=22.11}
TRITON_VERSION=${TRITON_VERSION:=22.12}
NVIDIA_UPSTREAM_VERSION=${NVIDIA_UPSTREAM_VERSION:=$TRITON_VERSION}
TENSORFLOW_IMAGE=${TENSORFLOW_IMAGE:=nvcr.io/nvidia/tensorflow:$NVIDIA_UPSTREAM_VERSION-tf2-py3}
PYTORCH_IMAGE=${PYTORCH_IMAGE:=nvcr.io/nvidia/pytorch:$NVIDIA_UPSTREAM_VERSION-py3}
Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_qa_model_repository
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@
##
############################################################################

TRITON_VERSION=${TRITON_VERSION:=22.11}
TRITON_VERSION=${TRITON_VERSION:=22.12}

# ONNX. Use ONNX_OPSET 0 to use the default for ONNX version
ONNX_VERSION=1.10.1
Expand Down
2 changes: 1 addition & 1 deletion qa/common/gen_xavier_trt_models
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
##
############################################################################

TRITON_VERSION=${TRITON_VERSION:=22.11}
TRITON_VERSION=${TRITON_VERSION:=22.12}
CUDA_DEVICE=${RUNNER_ID:=0}

HOST_BUILD_DIR=${HOST_BUILD_DIR:=/tmp}
Expand Down

0 comments on commit 17a7e0d

Please sign in to comment.