Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a few more ZZIdl methods #1409

Merged
merged 1 commit into from
Feb 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/AlgAss/AbsAlgAss.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1212,7 +1212,7 @@ end
@doc raw"""
radical(A::AbstractAssociativeAlgebra) -> AbsAlgAssIdl

Returns the Jacobson-Radical of $A$.
Returns the Jacobson radical of $A$.
"""
function radical(A::AbstractAssociativeAlgebra{T}) where { T } #<: Union{ fpFieldElem, EuclideanRingResidueFieldElem{ZZRingElem}, fqPolyRepFieldElem, FqPolyRepFieldElem, QQFieldElem, AbsSimpleNumFieldElem } }
return ideal_from_gens(A, _radical(A), :twosided)
Expand Down
15 changes: 14 additions & 1 deletion src/NumField/QQ.jl
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,13 @@ end

*(x::ZZIdl, y::ZZIdl) = ZZIdl(x.gen * y.gen)

intersect(x::ZZIdl, y::ZZIdl) = ZZIdl(lcm(x.gen, y.gen))
function intersect(x::ZZIdl, y::ZZIdl...)
g = gen(x)
for I in y
g = lcm(g, gen(I))
end
return ZZIdl(g)
end

lcm(x::ZZIdl, y::ZZIdl) = intersect(x, y)

Expand All @@ -152,6 +158,13 @@ isone(I::ZZIdl) = isone(I.gen)
iszero(I::ZZIdl) = iszero(gen(I))
is_maximal(I::ZZIdl) = is_prime(gen(I))
is_prime(I::ZZIdl) = is_zero(I) || is_maximal(I)
is_primary(I::ZZIdl) = is_zero(I) || is_prime_power_with_data(gen(I))[1]

is_subset(I::ZZIdl, J::ZZIdl) = is_divisible_by(gen(J), gen(I))

radical(I::ZZIdl) = iszero(I) ? I : ideal(ZZ, radical(gen(I)))
primary_decomposition(I::ZZIdl) = iszero(I) ? [ (I,I) ] :
[ (ideal(ZZ, p^k), ideal(ZZ, p)) for (p,k) in factor(gen(I)) ]

maximal_order(::QQField) = ZZ

Expand Down
35 changes: 35 additions & 0 deletions test/NumField/QQ.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,19 @@
function check_primary_decomposition(J::Any)
@testset "Testing primary decomposition for $J" begin
d = primary_decomposition(J)
@test all(is_primary(Q) for (Q,P) in d)
@test all(is_prime(P) for (Q,P) in d)
@test all(is_subset(P,Q) for (Q,P) in d)
if isempty(d)
@test isone(J)
@test J == radical(J)
else
@test intersect([Q for (Q,P) in d]...) == J
@test prod([P for (Q,P) in d]) == radical(J)
end
end
end

@testset "NumField/QQ" begin
@test Hecke.ideal_type(ZZ) == Hecke.ZZIdl
@test Hecke.ideal_type(Hecke.ZZRing) == Hecke.ZZIdl
Expand All @@ -19,6 +35,8 @@
@test !is_one(I)
@test is_maximal(I)
@test is_prime(I)
@test is_primary(I)
check_primary_decomposition(I)

J = 4*ZZ

Expand All @@ -31,18 +49,35 @@
@test !is_one(J)
@test !is_maximal(J)
@test !is_prime(J)
@test is_primary(J)
check_primary_decomposition(J)

J = 0*ZZ
@test is_zero(J)
@test !is_one(J)
@test !is_maximal(J)
@test is_prime(J)
@test is_primary(J)
check_primary_decomposition(J)

J = 1*ZZ
@test !is_zero(J)
@test is_one(J)
@test !is_maximal(J)
@test !is_prime(J)
@test !is_primary(J)
check_primary_decomposition(J)

J = 36*ZZ
@test !is_zero(J)
@test !is_one(J)
@test !is_maximal(J)
@test !is_prime(J)
@test !is_primary(J)
@test radical(J) == 6*ZZ
check_primary_decomposition(J)

check_primary_decomposition((2*3*5)^2*ZZ)

I = QQ(1, 2)*ZZ
@test I == ZZ * QQ(1, 2)
Expand Down
Loading