Skip to content

Add Kinesis Source #31

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Feb 24, 2016
Merged

Add Kinesis Source #31

merged 16 commits into from
Feb 24, 2016

Conversation

zsxwing
Copy link

@zsxwing zsxwing commented Feb 22, 2016

No description provided.

throw new IllegalArgumentException("Option 'endpointUrl' is not specified")
})
val streamNames = caseInsensitiveOptions.getOrElse("streamNames", {
throw new IllegalArgumentException("Option 'streamNames' is not specified")
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is the most important option, and needs to be checked first. Also the lets make it just "streams"

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add an example in the error message to show how names can be comma separated.

parameters: Map[String, String]): Source = {
val caseInsensitiveOptions = new CaseInsensitiveMap(parameters)
val regionName = caseInsensitiveOptions.getOrElse("regionName", {
throw new IllegalArgumentException("Option 'regionName' is not specified")
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should not check for both regionName and endpointUrl. Only one of them is sufficient. Ultimately the source should take only endpointUrl. If the user specifies region, then you can derive the endpoint from it.
Regions.getCurrentRegion.getServiceEndpoint("kinesis")

Also make the names "region" and "endpoint".

}).split(",", -1).toSet
if (streams.isEmpty || streams.exists(_.isEmpty)) {
throw new IllegalArgumentException(
"Option 'streams' is invalid. Please use comma separated string (e.g., 'stream1,stream2')")
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If the user hasnt comma separated multiple names (e.g. stream1|stream2), then this condition wont be true anyways. So this condition is about avoiding empty names, and accordingly the error statement should make it clear...

Option 'stream' is invalid, as stream names cannot be empty.

}

val initialPosInStream =
caseInsensitiveOptions.getOrElse("initialPosInStream", "LATEST") match {
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

initialPosInStream is too long. just position is sufficient.

@zsxwing
Copy link
Author

zsxwing commented Feb 23, 2016

Updated again.

CheckAnswer(testData.map { _ + 1 }: _*)
)
testIfEnabled("call kinesis when not using stream") {
val expectedMessage = "org.apache.spark.streaming.kinesis.DefaultSource is " +
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

since this message is generated by some other component other than kinesis, if they change message this function could silently break (as kinesis tests dont run always). So dont check the message.

.kinesis().stream()

val sources = df.queryExecution.analyzed.collect {
case StreamingRelation(s: KinesisSource, _) => s
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

incorrect indent.

fromSeqNums: Seq[(Shard, Option[String], BlockId)],
initialPositionInStream: InitialPositionInStream,
readTimeoutMs: Long = 2000L
) extends Serializable with Logging {
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

incorrect indent

tdas added a commit that referenced this pull request Feb 24, 2016
@tdas tdas merged commit 06a7c61 into tdas:streaming-df-kinesis Feb 24, 2016
@zsxwing zsxwing deleted the streaming-df-kinesis branch February 25, 2016 22:25
tdas pushed a commit that referenced this pull request Jun 16, 2016
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes apache#13682 from davies/fix_py_udf.
tdas pushed a commit that referenced this pull request Jun 30, 2016
## What changes were proposed in this pull request?

After we move the ExtractPythonUDF rule into physical plan, Python UDF can't work on top of aggregate anymore, because they can't be evaluated before aggregate, should be evaluated after aggregate. This PR add another rule to extract these kind of Python UDF from logical aggregate, create a Project on top of Aggregate.

## How was this patch tested?

Added regression tests. The plan of added test query looks like this:
```
== Parsed Logical Plan ==
'Project [<lambda>('k, 's) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Analyzed Logical Plan ==
t: int
Project [<lambda>(k#17, s#22L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS k#17, sum(cast(<lambda>(value#6) as bigint)) AS s#22L]
   +- LogicalRDD [key#5L, value#6]

== Optimized Logical Plan ==
Project [<lambda>(agg#29, agg#30L) AS t#26]
+- Aggregate [<lambda>(key#5L)], [<lambda>(key#5L) AS agg#29, sum(cast(<lambda>(value#6) as bigint)) AS agg#30L]
   +- LogicalRDD [key#5L, value#6]

== Physical Plan ==
*Project [pythonUDF0#37 AS t#26]
+- BatchEvalPython [<lambda>(agg#29, agg#30L)], [agg#29, agg#30L, pythonUDF0#37]
   +- *HashAggregate(key=[<lambda>(key#5L)#31], functions=[sum(cast(<lambda>(value#6) as bigint))], output=[agg#29,agg#30L])
      +- Exchange hashpartitioning(<lambda>(key#5L)#31, 200)
         +- *HashAggregate(key=[pythonUDF0#34 AS <lambda>(key#5L)#31], functions=[partial_sum(cast(pythonUDF1#35 as bigint))], output=[<lambda>(key#5L)#31,sum#33L])
            +- BatchEvalPython [<lambda>(key#5L), <lambda>(value#6)], [key#5L, value#6, pythonUDF0#34, pythonUDF1#35]
               +- Scan ExistingRDD[key#5L,value#6]
```

Author: Davies Liu <davies@databricks.com>

Closes apache#13682 from davies/fix_py_udf.

(cherry picked from commit 5389013)
Signed-off-by: Davies Liu <davies.liu@gmail.com>
tdas pushed a commit that referenced this pull request Mar 20, 2017
…boxing/unboxing

## What changes were proposed in this pull request?

This PR improve performance of Dataset.map() for primitive types by removing boxing/unbox operations. This is based on [the discussion](apache#16391 (comment)) with cloud-fan.

Current Catalyst generates a method call to a `apply()` method of an anonymous function written in Scala. The types of an argument and return value are `java.lang.Object`. As a result, each method call for a primitive value involves a pair of unboxing and boxing for calling this `apply()` method and a pair of boxing and unboxing for returning from this `apply()` method.

This PR directly calls a specialized version of a `apply()` method without boxing and unboxing. For example, if types of an arguments ant return value is `int`, this PR generates a method call to `apply$mcII$sp`. This PR supports any combination of `Int`, `Long`, `Float`, and `Double`.

The following is a benchmark result using [this program](https://github.com/apache/spark/pull/16391/files) with 4.7x. Here is a Dataset part of this program.

Without this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1923 / 1952         52.0          19.2       1.0X
DataFrame                                      526 /  548        190.2           5.3       3.7X
Dataset                                       3094 / 3154         32.3          30.9       0.6X
```

With this PR
```
OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic
Intel(R) Xeon(R) CPU E5-2667 v3  3.20GHz
back-to-back map:                        Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
RDD                                           1883 / 1892         53.1          18.8       1.0X
DataFrame                                      502 /  642        199.1           5.0       3.7X
Dataset                                        657 /  784        152.2           6.6       2.9X
```

```java
  def backToBackMap(spark: SparkSession, numRows: Long, numChains: Int): Benchmark = {
    import spark.implicits._
    val rdd = spark.sparkContext.range(0, numRows)
    val ds = spark.range(0, numRows)
    val func = (l: Long) => l + 1
    val benchmark = new Benchmark("back-to-back map", numRows)
...
    benchmark.addCase("Dataset") { iter =>
      var res = ds.as[Long]
      var i = 0
      while (i < numChains) {
        res = res.map(func)
        i += 1
      }
      res.queryExecution.toRdd.foreach(_ => Unit)
    }
    benchmark
  }
```

A motivating example
```java
Seq(1, 2, 3).toDS.map(i => i * 7).show
```

Generated code without this PR
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           Object mapelements_funcResult = null;
/* 054 */           mapelements_funcResult = ((scala.Function1) references[0]).apply(mapelements_argValue);
/* 055 */           if (mapelements_funcResult == null) {
/* 056 */             mapelements_isNull = true;
/* 057 */           } else {
/* 058 */             mapelements_value = (Integer) mapelements_funcResult;
/* 059 */           }
/* 060 */
/* 061 */         }
/* 062 */
/* 063 */       }
/* 064 */
/* 065 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 066 */
/* 067 */       if (mapelements_isNull) {
/* 068 */         serializefromobject_rowWriter.setNullAt(0);
/* 069 */       } else {
/* 070 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 071 */       }
/* 072 */       append(serializefromobject_result);
/* 073 */       if (shouldStop()) return;
/* 074 */     }
/* 075 */   }
/* 076 */ }
```

Generated code with this PR (lines 48-56 are changed)
```java
/* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator inputadapter_input;
/* 009 */   private UnsafeRow deserializetoobject_result;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder;
/* 011 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter;
/* 012 */   private int mapelements_argValue;
/* 013 */   private UnsafeRow mapelements_result;
/* 014 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter;
/* 016 */   private UnsafeRow serializefromobject_result;
/* 017 */   private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder;
/* 018 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter;
/* 019 */
/* 020 */   public GeneratedIterator(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */     inputadapter_input = inputs[0];
/* 028 */     deserializetoobject_result = new UnsafeRow(1);
/* 029 */     this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0);
/* 030 */     this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1);
/* 031 */
/* 032 */     mapelements_result = new UnsafeRow(1);
/* 033 */     this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0);
/* 034 */     this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1);
/* 035 */     serializefromobject_result = new UnsafeRow(1);
/* 036 */     this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0);
/* 037 */     this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1);
/* 038 */
/* 039 */   }
/* 040 */
/* 041 */   protected void processNext() throws java.io.IOException {
/* 042 */     while (inputadapter_input.hasNext() && !stopEarly()) {
/* 043 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
/* 044 */       int inputadapter_value = inputadapter_row.getInt(0);
/* 045 */
/* 046 */       boolean mapelements_isNull = true;
/* 047 */       int mapelements_value = -1;
/* 048 */       if (!false) {
/* 049 */         mapelements_argValue = inputadapter_value;
/* 050 */
/* 051 */         mapelements_isNull = false;
/* 052 */         if (!mapelements_isNull) {
/* 053 */           mapelements_value = ((scala.Function1) references[0]).apply$mcII$sp(mapelements_argValue);
/* 054 */         }
/* 055 */
/* 056 */       }
/* 057 */
/* 058 */       serializefromobject_rowWriter.zeroOutNullBytes();
/* 059 */
/* 060 */       if (mapelements_isNull) {
/* 061 */         serializefromobject_rowWriter.setNullAt(0);
/* 062 */       } else {
/* 063 */         serializefromobject_rowWriter.write(0, mapelements_value);
/* 064 */       }
/* 065 */       append(serializefromobject_result);
/* 066 */       if (shouldStop()) return;
/* 067 */     }
/* 068 */   }
/* 069 */ }
```

Java bytecode for methods for `i => i * 7`
```java
$ javap -c Test\$\$anonfun\$5\$\$anonfun\$apply\$mcV\$sp\$1.class
Compiled from "Test.scala"
public final class org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1 extends scala.runtime.AbstractFunction1$mcII$sp implements scala.Serializable {
  public static final long serialVersionUID;

  public final int apply(int);
    Code:
       0: aload_0
       1: iload_1
       2: invokevirtual #18                 // Method apply$mcII$sp:(I)I
       5: ireturn

  public int apply$mcII$sp(int);
    Code:
       0: iload_1
       1: bipush        7
       3: imul
       4: ireturn

  public final java.lang.Object apply(java.lang.Object);
    Code:
       0: aload_0
       1: aload_1
       2: invokestatic  #29                 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
       5: invokevirtual #31                 // Method apply:(I)I
       8: invokestatic  apache#35                 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      11: areturn

  public org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1(org.apache.spark.sql.Test$$anonfun$5);
    Code:
       0: aload_0
       1: invokespecial apache#42                 // Method scala/runtime/AbstractFunction1$mcII$sp."<init>":()V
       4: return
}
```
## How was this patch tested?

Added new test suites to `DatasetPrimitiveSuite`.

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes apache#17172 from kiszk/SPARK-19008.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants