forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 3
Fix ClassCastException when requesting receiver info #29
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
tdas
merged 1 commit into
tdas:streaming-dynamic-allocation
from
andrewor14:streaming-da
Dec 4, 2015
Merged
Fix ClassCastException when requesting receiver info #29
tdas
merged 1 commit into
tdas:streaming-dynamic-allocation
from
andrewor14:streaming-da
Dec 4, 2015
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
tdas
added a commit
that referenced
this pull request
Dec 4, 2015
Fix ClassCastException when requesting receiver info
tdas
pushed a commit
that referenced
this pull request
Mar 20, 2017
…boxing/unboxing ## What changes were proposed in this pull request? This PR improve performance of Dataset.map() for primitive types by removing boxing/unbox operations. This is based on [the discussion](apache#16391 (comment)) with cloud-fan. Current Catalyst generates a method call to a `apply()` method of an anonymous function written in Scala. The types of an argument and return value are `java.lang.Object`. As a result, each method call for a primitive value involves a pair of unboxing and boxing for calling this `apply()` method and a pair of boxing and unboxing for returning from this `apply()` method. This PR directly calls a specialized version of a `apply()` method without boxing and unboxing. For example, if types of an arguments ant return value is `int`, this PR generates a method call to `apply$mcII$sp`. This PR supports any combination of `Int`, `Long`, `Float`, and `Double`. The following is a benchmark result using [this program](https://github.com/apache/spark/pull/16391/files) with 4.7x. Here is a Dataset part of this program. Without this PR ``` OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic Intel(R) Xeon(R) CPU E5-2667 v3 3.20GHz back-to-back map: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ RDD 1923 / 1952 52.0 19.2 1.0X DataFrame 526 / 548 190.2 5.3 3.7X Dataset 3094 / 3154 32.3 30.9 0.6X ``` With this PR ``` OpenJDK 64-Bit Server VM 1.8.0_111-8u111-b14-2ubuntu0.16.04.2-b14 on Linux 4.4.0-47-generic Intel(R) Xeon(R) CPU E5-2667 v3 3.20GHz back-to-back map: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ RDD 1883 / 1892 53.1 18.8 1.0X DataFrame 502 / 642 199.1 5.0 3.7X Dataset 657 / 784 152.2 6.6 2.9X ``` ```java def backToBackMap(spark: SparkSession, numRows: Long, numChains: Int): Benchmark = { import spark.implicits._ val rdd = spark.sparkContext.range(0, numRows) val ds = spark.range(0, numRows) val func = (l: Long) => l + 1 val benchmark = new Benchmark("back-to-back map", numRows) ... benchmark.addCase("Dataset") { iter => var res = ds.as[Long] var i = 0 while (i < numChains) { res = res.map(func) i += 1 } res.queryExecution.toRdd.foreach(_ => Unit) } benchmark } ``` A motivating example ```java Seq(1, 2, 3).toDS.map(i => i * 7).show ``` Generated code without this PR ```java /* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator { /* 006 */ private Object[] references; /* 007 */ private scala.collection.Iterator[] inputs; /* 008 */ private scala.collection.Iterator inputadapter_input; /* 009 */ private UnsafeRow deserializetoobject_result; /* 010 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder; /* 011 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter; /* 012 */ private int mapelements_argValue; /* 013 */ private UnsafeRow mapelements_result; /* 014 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder; /* 015 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter; /* 016 */ private UnsafeRow serializefromobject_result; /* 017 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder; /* 018 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter; /* 019 */ /* 020 */ public GeneratedIterator(Object[] references) { /* 021 */ this.references = references; /* 022 */ } /* 023 */ /* 024 */ public void init(int index, scala.collection.Iterator[] inputs) { /* 025 */ partitionIndex = index; /* 026 */ this.inputs = inputs; /* 027 */ inputadapter_input = inputs[0]; /* 028 */ deserializetoobject_result = new UnsafeRow(1); /* 029 */ this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0); /* 030 */ this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1); /* 031 */ /* 032 */ mapelements_result = new UnsafeRow(1); /* 033 */ this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0); /* 034 */ this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1); /* 035 */ serializefromobject_result = new UnsafeRow(1); /* 036 */ this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0); /* 037 */ this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1); /* 038 */ /* 039 */ } /* 040 */ /* 041 */ protected void processNext() throws java.io.IOException { /* 042 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 043 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 044 */ int inputadapter_value = inputadapter_row.getInt(0); /* 045 */ /* 046 */ boolean mapelements_isNull = true; /* 047 */ int mapelements_value = -1; /* 048 */ if (!false) { /* 049 */ mapelements_argValue = inputadapter_value; /* 050 */ /* 051 */ mapelements_isNull = false; /* 052 */ if (!mapelements_isNull) { /* 053 */ Object mapelements_funcResult = null; /* 054 */ mapelements_funcResult = ((scala.Function1) references[0]).apply(mapelements_argValue); /* 055 */ if (mapelements_funcResult == null) { /* 056 */ mapelements_isNull = true; /* 057 */ } else { /* 058 */ mapelements_value = (Integer) mapelements_funcResult; /* 059 */ } /* 060 */ /* 061 */ } /* 062 */ /* 063 */ } /* 064 */ /* 065 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 066 */ /* 067 */ if (mapelements_isNull) { /* 068 */ serializefromobject_rowWriter.setNullAt(0); /* 069 */ } else { /* 070 */ serializefromobject_rowWriter.write(0, mapelements_value); /* 071 */ } /* 072 */ append(serializefromobject_result); /* 073 */ if (shouldStop()) return; /* 074 */ } /* 075 */ } /* 076 */ } ``` Generated code with this PR (lines 48-56 are changed) ```java /* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator { /* 006 */ private Object[] references; /* 007 */ private scala.collection.Iterator[] inputs; /* 008 */ private scala.collection.Iterator inputadapter_input; /* 009 */ private UnsafeRow deserializetoobject_result; /* 010 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder deserializetoobject_holder; /* 011 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter deserializetoobject_rowWriter; /* 012 */ private int mapelements_argValue; /* 013 */ private UnsafeRow mapelements_result; /* 014 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder mapelements_holder; /* 015 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter mapelements_rowWriter; /* 016 */ private UnsafeRow serializefromobject_result; /* 017 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder; /* 018 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter; /* 019 */ /* 020 */ public GeneratedIterator(Object[] references) { /* 021 */ this.references = references; /* 022 */ } /* 023 */ /* 024 */ public void init(int index, scala.collection.Iterator[] inputs) { /* 025 */ partitionIndex = index; /* 026 */ this.inputs = inputs; /* 027 */ inputadapter_input = inputs[0]; /* 028 */ deserializetoobject_result = new UnsafeRow(1); /* 029 */ this.deserializetoobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(deserializetoobject_result, 0); /* 030 */ this.deserializetoobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(deserializetoobject_holder, 1); /* 031 */ /* 032 */ mapelements_result = new UnsafeRow(1); /* 033 */ this.mapelements_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(mapelements_result, 0); /* 034 */ this.mapelements_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(mapelements_holder, 1); /* 035 */ serializefromobject_result = new UnsafeRow(1); /* 036 */ this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0); /* 037 */ this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1); /* 038 */ /* 039 */ } /* 040 */ /* 041 */ protected void processNext() throws java.io.IOException { /* 042 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 043 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 044 */ int inputadapter_value = inputadapter_row.getInt(0); /* 045 */ /* 046 */ boolean mapelements_isNull = true; /* 047 */ int mapelements_value = -1; /* 048 */ if (!false) { /* 049 */ mapelements_argValue = inputadapter_value; /* 050 */ /* 051 */ mapelements_isNull = false; /* 052 */ if (!mapelements_isNull) { /* 053 */ mapelements_value = ((scala.Function1) references[0]).apply$mcII$sp(mapelements_argValue); /* 054 */ } /* 055 */ /* 056 */ } /* 057 */ /* 058 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 059 */ /* 060 */ if (mapelements_isNull) { /* 061 */ serializefromobject_rowWriter.setNullAt(0); /* 062 */ } else { /* 063 */ serializefromobject_rowWriter.write(0, mapelements_value); /* 064 */ } /* 065 */ append(serializefromobject_result); /* 066 */ if (shouldStop()) return; /* 067 */ } /* 068 */ } /* 069 */ } ``` Java bytecode for methods for `i => i * 7` ```java $ javap -c Test\$\$anonfun\$5\$\$anonfun\$apply\$mcV\$sp\$1.class Compiled from "Test.scala" public final class org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1 extends scala.runtime.AbstractFunction1$mcII$sp implements scala.Serializable { public static final long serialVersionUID; public final int apply(int); Code: 0: aload_0 1: iload_1 2: invokevirtual #18 // Method apply$mcII$sp:(I)I 5: ireturn public int apply$mcII$sp(int); Code: 0: iload_1 1: bipush 7 3: imul 4: ireturn public final java.lang.Object apply(java.lang.Object); Code: 0: aload_0 1: aload_1 2: invokestatic #29 // Method scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I 5: invokevirtual #31 // Method apply:(I)I 8: invokestatic apache#35 // Method scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer; 11: areturn public org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1(org.apache.spark.sql.Test$$anonfun$5); Code: 0: aload_0 1: invokespecial apache#42 // Method scala/runtime/AbstractFunction1$mcII$sp."<init>":()V 4: return } ``` ## How was this patch tested? Added new test suites to `DatasetPrimitiveSuite`. Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes apache#17172 from kiszk/SPARK-19008.
tdas
pushed a commit
that referenced
this pull request
Sep 4, 2020
…or its output partitioning ### What changes were proposed in this pull request? Currently, the `BroadcastHashJoinExec`'s `outputPartitioning` only uses the streamed side's `outputPartitioning`. However, if the join type of `BroadcastHashJoinExec` is an inner-like join, the build side's info (the join keys) can be added to `BroadcastHashJoinExec`'s `outputPartitioning`. For example, ```Scala spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "500") val t1 = (0 until 100).map(i => (i % 5, i % 13)).toDF("i1", "j1") val t2 = (0 until 100).map(i => (i % 5, i % 13)).toDF("i2", "j2") val t3 = (0 until 20).map(i => (i % 7, i % 11)).toDF("i3", "j3") val t4 = (0 until 100).map(i => (i % 5, i % 13)).toDF("i4", "j4") // join1 is a sort merge join. val join1 = t1.join(t2, t1("i1") === t2("i2")) // join2 is a broadcast join where t3 is broadcasted. val join2 = join1.join(t3, join1("i1") === t3("i3")) // Join on the column from the broadcasted side (i3). val join3 = join2.join(t4, join2("i3") === t4("i4")) join3.explain ``` You see that `Exchange hashpartitioning(i2#103, 200)` is introduced because there is no output partitioning info from the build side. ``` == Physical Plan == *(6) SortMergeJoin [i3#29], [i4#40], Inner :- *(4) Sort [i3#29 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(i3#29, 200), true, [id=apache#55] : +- *(3) BroadcastHashJoin [i1#7], [i3#29], Inner, BuildRight : :- *(3) SortMergeJoin [i1#7], [i2#18], Inner : : :- *(1) Sort [i1#7 ASC NULLS FIRST], false, 0 : : : +- Exchange hashpartitioning(i1#7, 200), true, [id=#28] : : : +- LocalTableScan [i1#7, j1#8] : : +- *(2) Sort [i2#18 ASC NULLS FIRST], false, 0 : : +- Exchange hashpartitioning(i2#18, 200), true, [id=#29] : : +- LocalTableScan [i2#18, j2#19] : +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint))), [id=#34] : +- LocalTableScan [i3#29, j3#30] +- *(5) Sort [i4#40 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(i4#40, 200), true, [id=apache#39] +- LocalTableScan [i4#40, j4#41] ``` This PR proposes to introduce output partitioning for the build side for `BroadcastHashJoinExec` if the streamed side has a `HashPartitioning` or a collection of `HashPartitioning`s. There is a new internal config `spark.sql.execution.broadcastHashJoin.outputPartitioningExpandLimit`, which can limit the number of partitioning a `HashPartitioning` can expand to. It can be set to "0" to disable this feature. ### Why are the changes needed? To remove unnecessary shuffle. ### Does this PR introduce _any_ user-facing change? Yes, now the shuffle in the above example can be eliminated: ``` == Physical Plan == *(5) SortMergeJoin [i3#108], [i4#119], Inner :- *(3) Sort [i3#108 ASC NULLS FIRST], false, 0 : +- *(3) BroadcastHashJoin [i1#86], [i3#108], Inner, BuildRight : :- *(3) SortMergeJoin [i1#86], [i2#97], Inner : : :- *(1) Sort [i1#86 ASC NULLS FIRST], false, 0 : : : +- Exchange hashpartitioning(i1#86, 200), true, [id=apache#120] : : : +- LocalTableScan [i1#86, j1#87] : : +- *(2) Sort [i2#97 ASC NULLS FIRST], false, 0 : : +- Exchange hashpartitioning(i2#97, 200), true, [id=apache#121] : : +- LocalTableScan [i2#97, j2#98] : +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint))), [id=apache#126] : +- LocalTableScan [i3#108, j3#109] +- *(4) Sort [i4#119 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(i4#119, 200), true, [id=apache#130] +- LocalTableScan [i4#119, j4#120] ``` ### How was this patch tested? Added new tests. Closes apache#28676 from imback82/broadcast_join_output. Authored-by: Terry Kim <yuminkim@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
tdas
pushed a commit
that referenced
this pull request
Apr 5, 2021
…mand ### What changes were proposed in this pull request? This PR proposes to sort table properties in DESCRIBE TABLE command. This is consistent with DSv2 command as well: https://github.com/apache/spark/blob/e3058ba17cb4512537953eb4ded884e24ee93ba2/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/DescribeTableExec.scala#L63 This PR fixes the test case in Scala 2.13 build as well where the table properties have different order in the map. ### Why are the changes needed? To keep the deterministic and pretty output, and fix the tests in Scala 2.13 build. See https://amplab.cs.berkeley.edu/jenkins/job/spark-master-test-maven-hadoop-3.2-scala-2.13/49/testReport/junit/org.apache.spark.sql/SQLQueryTestSuite/describe_sql/ ``` describe.sql Expected "...spark_catalog, view.[query.out.col.2=c, view.referredTempFunctionsNames=[], view.catalogAndNamespace.part.1=default]]", but got "...spark_catalog, view.[catalogAndNamespace.part.1=default, view.query.out.col.2=c, view.referredTempFunctionsNames=[]]]" Result did not match for query #29 DESC FORMATTED v ``` ### Does this PR introduce _any_ user-facing change? Yes, it will change the text output from `DESCRIBE [EXTENDED|FORMATTED] table_name`. Now the table properties are sorted by its key. ### How was this patch tested? Related unittests were fixed accordingly. Closes apache#30799 from HyukjinKwon/SPARK-33803. Authored-by: HyukjinKwon <gurwls223@apache.org> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.