Skip to content

Conversation

@TroyMitchell911
Copy link

@TroyMitchell911 TroyMitchell911 commented Feb 14, 2025

This repository is a bit old, master is not even newer than v6.12.
This is just an example to show my work, I don't mean to merge it to master. I hope the repository administrator can update the repository and create a branch similar to v6.12-port based on v6.12.
After the branch is created, I will resubmit the PR to that branch.

This PR adds drivers for cv1800b/sg2000/sg2002 chips, some of which are from the main line and some from vendor. For more detailed information on the responsible person and driver source, please see here: https://github.com/Troyself/milkv-duo/wiki

ISSUES:

  • On cv1800b, I can't use TPU because there is not enough memory.
  • USB cannot support role switching within the system, and it is necessary to confirm whether it is host or peripheral before the system starts.
  • DMA is not supported
  • Some drivers are untested

Luo Yifan and others added 30 commits November 7, 2024 13:07
…_rate()

This patch checks if div is less than or equal to zero (div <= 0). If
div is zero or negative, the function returns -EINVAL, ensuring the
division operation (*prate / div) is safe to perform.

Signed-off-by: Luo Yifan <luoyifan@cmss.chinamobile.com>
Link: https://patch.msgid.link/20241106014654.206860-1-luoyifan@cmss.chinamobile.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This patch checks if div is less than or equal to zero (div <= 0). If
div is zero or negative, the function returns -EINVAL, ensuring the
division operation is safe to perform.

Signed-off-by: Luo Yifan <luoyifan@cmss.chinamobile.com>
Reviewed-by: Olivier Moysan <olivier.moysan@foss.st.com>
Link: https://patch.msgid.link/20241107015936.211902-1-luoyifan@cmss.chinamobile.com
Signed-off-by: Mark Brown <broonie@kernel.org>
I noticed that recently, simple operations like "make" started
failing on NFSv3 mounts of ext4 exports. Network capture shows that
READDIRPLUS operated correctly but READDIR failed with
NFS3ERR_INVAL. The vfs_llseek() call returned EINVAL when it is
passed a non-zero starting directory cookie.

I bisected to commit c689bdd ("nfsd: further centralize
protocol version checks.").

Turns out that nfsd3_proc_readdir() does not call fh_verify() before
it calls nfsd_readdir(), so the new fhp->fh_64bit_cookies boolean is
not set properly. This leaves the NFSD_MAY_64BIT_COOKIE unset when
the directory is opened.

For ext4, this causes the wrong "max file size" value to be used
when sanity checking the incoming directory cookie (which is a seek
offset value).

The fhp->fh_64bit_cookies boolean is /always/ properly initialized
after nfsd_open() returns. There doesn't seem to be a reason for the
generic NFSD open helper to handle the f_mode fix-up for
directories, so just move that to the one caller that tries to open
an S_IFDIR with NFSD_MAY_64BIT_COOKIE.

Suggested-by: NeilBrown <neilb@suse.de>
Fixes: c689bdd ("nfsd: further centralize protocol version checks.")
Reviewed-by: NeilBrown <neilb@suse.de>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
…b/scm/linux/kernel/git/westeri/thunderbolt into usb-linus

thunderbolt: Fixes for v6.12-rc7

This includes following USB4/Thunderbolt fixes for v6.12-rc7:

  - Fix for retimer enumeration.
  - Fix connection issue with Pluggable UD-4VPD USB4 dock.

Both have been in linux-next with no reported issues.

* tag 'thunderbolt-for-v6.12-rc7' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt:
  thunderbolt: Fix connection issue with Pluggable UD-4VPD dock
  thunderbolt: Add only on-board retimers when !CONFIG_USB4_DEBUGFS_MARGINING
…less strict

There are 2G and 4G RAM versions of the Lenovo Yoga Tab 3 X90F and it
turns out that the 2G version has a DMI product name of
"CHERRYVIEW D1 PLATFORM" where as the 4G version has
"CHERRYVIEW C0 PLATFORM". The sys-vendor + product-version check are
unique enough that the product-name check is not necessary.

Drop the product-name check so that the existing DMI match for the 4G
RAM version also matches the 2G RAM version.

Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240825132131.6643-1-hdegoede@redhat.com
Similar to commit cac0757 ("drm/panthor: Fix race when converting
group handle to group object") we need to use the XArray's internal
locking when retrieving a vm pointer from there.

v2: Removed part of the patch that was trying to protect fetching
the heap pointer from XArray, as that operation is protected by
the @pool->lock.

Fixes: 647810e ("drm/panthor: Add the MMU/VM logical block")
Reported-by: Jann Horn <jannh@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Liviu Dudau <liviu.dudau@arm.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20241106185806.389089-1-liviu.dudau@arm.com
Write the size of the optional payload of SOF_IPC4_MOD_INIT_INSTANCE
message to extension param_size-bits.

The previous IPC4 version does not set these bits that should indicate
the size of the optional payload (struct sof_ipc4_probe_cfg). The old
firmware side component code works well without these bits, but when
the probes are converted to use the generic module API, this does not
work anymore.

Fixes: f562359 ("ASoC: SOF: IPC4: probes: Implement IPC4 ops for probes client device")
Signed-off-by: Jyri Sarha <jyri.sarha@linux.intel.com>
Reviewed-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Reviewed-by: Liam Girdwood <liam.r.girdwood@intel.com>
Reviewed-by: Bard Liao <yung-chuan.liao@linux.intel.com>
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@linux.intel.com>
Link: https://patch.msgid.link/20241107132840.17386-1-peter.ujfalusi@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
…git/netfilter/nf

Pablo Neira Ayuso says:

====================
Netfilter fix for net

The following series contains a Netfilter fix:

1) Wait for rcu grace period after netdevice removal is reported via event.

* tag 'nf-24-11-07' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf:
  netfilter: nf_tables: wait for rcu grace period on net_device removal
====================

Link: https://patch.msgid.link/20241107113212.116634-1-pablo@netfilter.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The current panthor_device_mmap_io() implementation has two issues:

1. For mapping DRM_PANTHOR_USER_FLUSH_ID_MMIO_OFFSET,
   panthor_device_mmap_io() bails if VM_WRITE is set, but does not clear
   VM_MAYWRITE. That means userspace can use mprotect() to make the mapping
   writable later on. This is a classic Linux driver gotcha.
   I don't think this actually has any impact in practice:
   When the GPU is powered, writes to the FLUSH_ID seem to be ignored; and
   when the GPU is not powered, the dummy_latest_flush page provided by the
   driver is deliberately designed to not do any flushes, so the only thing
   writing to the dummy_latest_flush could achieve would be to make *more*
   flushes happen.

2. panthor_device_mmap_io() does not block MAP_PRIVATE mappings (which are
   mappings without the VM_SHARED flag).
   MAP_PRIVATE in combination with VM_MAYWRITE indicates that the VMA has
   copy-on-write semantics, which for VM_PFNMAP are semi-supported but
   fairly cursed.
   In particular, in such a mapping, the driver can only install PTEs
   during mmap() by calling remap_pfn_range() (because remap_pfn_range()
   wants to **store the physical address of the mapped physical memory into
   the vm_pgoff of the VMA**); installing PTEs later on with a fault
   handler (as panthor does) is not supported in private mappings, and so
   if you try to fault in such a mapping, vmf_insert_pfn_prot() splats when
   it hits a BUG() check.

Fix it by clearing the VM_MAYWRITE flag (userspace writing to the FLUSH_ID
doesn't make sense) and requiring VM_SHARED (copy-on-write semantics for
the FLUSH_ID don't make sense).

Reproducers for both scenarios are in the notes of my patch on the mailing
list; I tested that these bugs exist on a Rock 5B machine.

Note that I only compile-tested the patch, I haven't tested it; I don't
have a working kernel build setup for the test machine yet. Please test it
before applying it.

Cc: stable@vger.kernel.org
Fixes: 5fe909c ("drm/panthor: Add the device logical block")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Liviu Dudau <liviu.dudau@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20241105-panthor-flush-page-fixes-v1-1-829aaf37db93@google.com
seq_printf is costy, on a system with n CPUs, reading /proc/softirqs
would yield 10*n decimal values, and the extra cost parsing format string
grows linearly with number of cpus. Replace seq_printf with
seq_put_decimal_ull_width have significant performance improvement.
On an 8CPUs system, reading /proc/softirqs show ~40% performance
gain with this patch.

Signed-off-by: David Wang <00107082@163.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
…nux/kernel/git/ukleinek/linux

Pull pwm fix from Uwe Kleine-König:
 "Fix period setting in imx-tpm driver and a maintainer update

  Erik Schumacher found and fixed a problem in the calculation of the
  PWM period setting yielding too long periods. Trevor Gamblin - who
  already cared about mainlining the pwm-axi-pwmgen driver - stepped
  forward as an additional reviewer.

  Thanks to Erik and Trevor"

* tag 'pwm/for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ukleinek/linux:
  MAINTAINERS: add self as reviewer for AXI PWM GENERATOR
  pwm: imx-tpm: Use correct MODULO value for EPWM mode
The SMC-R variant of the SMC protocol used direct call to function
ib_device_ops.get_netdev() to lookup netdev. As we used mlx5 device
driver to run SMC-R, it failed to find a device, because in mlx5_ib the
internal net device management for retrieving net devices was replaced
by a common interface ib_device_get_netdev() in commit 8d159eb
("RDMA/mlx5: Use IB set_netdev and get_netdev functions").

Since such direct accesses to the internal net device management is not
recommended at all, update the SMC-R code to use proper API
ib_device_get_netdev().

Fixes: 5490357 ("net/smc: allow pnetid-less configuration")
Reported-by: Aswin K <aswin@linux.ibm.com>
Reviewed-by: Gerd Bayer <gbayer@linux.ibm.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Reviewed-by: Dust Li <dust.li@linux.alibaba.com>
Reviewed-by: Wen Gu <guwen@linux.alibaba.com>
Reviewed-by: Zhu Yanjun <yanjun.zhu@linux.dev>
Reviewed-by: D. Wythe <alibuda@linux.alibaba.com>
Signed-off-by: Wenjia Zhang <wenjia@linux.ibm.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Link: https://patch.msgid.link/20241106082612.57803-1-wenjia@linux.ibm.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If a call gets aborted (e.g. because kafs saw a signal) between it being
queued for connection and the I/O thread picking up the call, the abort
will be prioritised over the connection and it will be removed from
local->new_client_calls by rxrpc_disconnect_client_call() without a lock
being held.  This may cause other calls on the list to disappear if a race
occurs.

Fix this by taking the client_call_lock when removing a call from whatever
list its ->wait_link happens to be on.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Fixes: 9d35d88 ("rxrpc: Move client call connection to the I/O thread")
Link: https://patch.msgid.link/726660.1730898202@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Thanks to commit 4bbd360 ("socket: Print pf->create() when
it does not clear sock->sk on failure."), syzbot found an issue with AF_SMC:

smc_create must clear sock->sk on failure, family: 43, type: 1, protocol: 0
 WARNING: CPU: 0 PID: 5827 at net/socket.c:1565 __sock_create+0x96f/0xa30 net/socket.c:1563
Modules linked in:
CPU: 0 UID: 0 PID: 5827 Comm: syz-executor259 Not tainted 6.12.0-rc6-next-20241106-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
 RIP: 0010:__sock_create+0x96f/0xa30 net/socket.c:1563
Code: 03 00 74 08 4c 89 e7 e8 4f 3b 85 f8 49 8b 34 24 48 c7 c7 40 89 0c 8d 8b 54 24 04 8b 4c 24 0c 44 8b 44 24 08 e8 32 78 db f7 90 <0f> 0b 90 90 e9 d3 fd ff ff 89 e9 80 e1 07 fe c1 38 c1 0f 8c ee f7
RSP: 0018:ffffc90003e4fda0 EFLAGS: 00010246
RAX: 099c6f938c7f4700 RBX: 1ffffffff1a595fd RCX: ffff888034823c00
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 00000000ffffffe9 R08: ffffffff81567052 R09: 1ffff920007c9f50
R10: dffffc0000000000 R11: fffff520007c9f51 R12: ffffffff8d2cafe8
R13: 1ffffffff1a595fe R14: ffffffff9a789c40 R15: ffff8880764298c0
FS:  000055557b518380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa62ff43225 CR3: 0000000031628000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
  sock_create net/socket.c:1616 [inline]
  __sys_socket_create net/socket.c:1653 [inline]
  __sys_socket+0x150/0x3c0 net/socket.c:1700
  __do_sys_socket net/socket.c:1714 [inline]
  __se_sys_socket net/socket.c:1712 [inline]

For reference, see commit 2d859af ("Merge branch
'do-not-leave-dangling-sk-pointers-in-pf-create-functions'")

Fixes: d25a92c ("net/smc: Introduce IPPROTO_SMC")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Ignat Korchagin <ignat@cloudflare.com>
Cc: D. Wythe <alibuda@linux.alibaba.com>
Cc: Dust Li <dust.li@linux.alibaba.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Wenjia Zhang <wenjia@linux.ibm.com>
Link: https://patch.msgid.link/20241106221922.1544045-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
…r path

The ionic_setup_one() creates a debugfs entry for ionic upon
successful execution. However, the ionic_probe() does not
release the dentry before returning, resulting in a memory
leak.

To fix this bug, we add the ionic_debugfs_del_dev() to release
the resources in a timely manner before returning.

Fixes: 0de38d9 ("ionic: extract common bits from ionic_probe")
Signed-off-by: Wentao Liang <Wentao_liang_g@163.com>
Acked-by: Shannon Nelson <shannon.nelson@amd.com>
Link: https://patch.msgid.link/20241107021756.1677-1-liangwentao@iscas.ac.cn
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
… block-6.12

Pull NVMe fix from Keith:

"nvme fix for Linux 6.13

 - Use correct list traversal for srcu lists (Breno)"

* tag 'nvme-6.12-2024-11-07' of git://git.infradead.org/nvme:
  nvme/host: Fix RCU list traversal to use SRCU primitive
…/git/netdev/net

Pull networking fixes from Jakub Kicinski:
 "Including fixes from can and netfilter.

  Things are slowing down quite a bit, mostly driver fixes here. No
  known ongoing investigations.

  Current release - new code bugs:

   - eth: ti: am65-cpsw:
      - fix multi queue Rx on J7
      - fix warning in am65_cpsw_nuss_remove_rx_chns()

  Previous releases - regressions:

   - mptcp: do not require admin perm to list endpoints, got missed in a
     refactoring

   - mptcp: use sock_kfree_s instead of kfree

  Previous releases - always broken:

   - sctp: properly validate chunk size in sctp_sf_ootb() fix OOB access

   - virtio_net: make RSS interact properly with queue number

   - can: mcp251xfd: mcp251xfd_get_tef_len(): fix length calculation

   - can: mcp251xfd: mcp251xfd_ring_alloc(): fix coalescing
     configuration when switching CAN modes

  Misc:

   - revert earlier hns3 fixes, they were ignoring IOMMU abstractions
     and need to be reworked

   - can: {cc770,sja1000}_isa: allow building on x86_64"

* tag 'net-6.12-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (42 commits)
  drivers: net: ionic: add missed debugfs cleanup to ionic_probe() error path
  net/smc: do not leave a dangling sk pointer in __smc_create()
  rxrpc: Fix missing locking causing hanging calls
  net/smc: Fix lookup of netdev by using ib_device_get_netdev()
  net: arc: rockchip: fix emac mdio node support
  net: arc: fix the device for dma_map_single/dma_unmap_single
  virtio_net: Update rss when set queue
  virtio_net: Sync rss config to device when virtnet_probe
  virtio_net: Add hash_key_length check
  virtio_net: Support dynamic rss indirection table size
  netfilter: nf_tables: wait for rcu grace period on net_device removal
  net: stmmac: Fix unbalanced IRQ wake disable warning on single irq case
  net: vertexcom: mse102x: Fix possible double free of TX skb
  mptcp: use sock_kfree_s instead of kfree
  mptcp: no admin perm to list endpoints
  net: phy: ti: add PHY_RST_AFTER_CLK_EN flag
  net: ethernet: ti: am65-cpsw: fix warning in am65_cpsw_nuss_remove_rx_chns()
  net: ethernet: ti: am65-cpsw: Fix multi queue Rx on J7
  net: hns3: fix kernel crash when uninstalling driver
  Revert "Merge branch 'there-are-some-bugfix-for-the-hns3-ethernet-driver'"
  ...
Netlink supports iterative dumping of data. It provides the families
the following ops:
 - start - (optional) kicks off the dumping process
 - dump  - actual dump helper, keeps getting called until it returns 0
 - done  - (optional) pairs with .start, can be used for cleanup
The whole process is asynchronous and the repeated calls to .dump
don't actually happen in a tight loop, but rather are triggered
in response to recvmsg() on the socket.

This gives the user full control over the dump, but also means that
the user can close the socket without getting to the end of the dump.
To make sure .start is always paired with .done we check if there
is an ongoing dump before freeing the socket, and if so call .done.

The complication is that sockets can get freed from BH and .done
is allowed to sleep. So we use a workqueue to defer the call, when
needed.

Unfortunately this does not work correctly. What we defer is not
the cleanup but rather releasing a reference on the socket.
We have no guarantee that we own the last reference, if someone
else holds the socket they may release it in BH and we're back
to square one.

The whole dance, however, appears to be unnecessary. Only the user
can interact with dumps, so we can clean up when socket is closed.
And close always happens in process context. Some async code may
still access the socket after close, queue notification skbs to it etc.
but no dumps can start, end or otherwise make progress.

Delete the workqueue and flush the dump state directly from the release
handler. Note that further cleanup is possible in -next, for instance
we now always call .done before releasing the main module reference,
so dump doesn't have to take a reference of its own.

Reported-by: syzkaller <syzkaller@googlegroups.com>
Fixes: ed5d778 ("netlink: Do not schedule work from sk_destruct")
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20241106015235.2458807-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
…rogress

Close a socket with dump in progress. We need a dump which generates
enough info not to fit into a single skb. Policy dump fits the bill.

Use the trick discovered by syzbot for keeping a ref on the socket
longer than just close, with mqueue.

  TAP version 13
  1..3
  # Starting 3 tests from 1 test cases.
  #  RUN           global.test_sanity ...
  #            OK  global.test_sanity
  ok 1 global.test_sanity
  #  RUN           global.close_in_progress ...
  #            OK  global.close_in_progress
  ok 2 global.close_in_progress
  #  RUN           global.close_with_ref ...
  #            OK  global.close_with_ref
  ok 3 global.close_with_ref
  # PASSED: 3 / 3 tests passed.
  # Totals: pass:3 fail:0 xfail:0 xpass:0 skip:0 error:0

Note that this test is not expected to fail but rather crash
the kernel if we get the cleanup wrong.

Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://patch.msgid.link/20241106015235.2458807-2-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
bucket_gen() checks if we're lookup up a valid bucket and returns NULL
otherwise, but bucket_gen_get() was failing to check; other callers were
correct.

Also do a bit of cleanup on callers.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Syzbot found an assertion pop, by generating an ancient filesystem
version with an invalid bkey_format (with fields that can overflow) as
well as packed keys that aren't representable unpacked.

This breaks key comparisons in all sorts of painful ways.

Filesystems have been automatically rewriting nodes with such invalid
formats for years; we can safely drop support for them.

Reported-by: syzbot+8a0109511de9d4b61217@syzkaller.appspotmail.com
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
If a btree split picks a pivot that's being deleted by a btree node
merge, we're going to have problems.

Fix this by checking if the pivot is being deleted, the same as we check
for deletions in journal replay keys.

Found by single_devic.ktest small_nodes.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
If BCH_FS_may_go_rw is not yet set, it indicates to the transaction
commit path that updates should be done via the list of journal replay
keys.

This must be set before multithreaded use commences.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
bio_kmalloc may return NULL, will cause NULL pointer dereference.
Add check NULL return for bio_kmalloc in journal_read_bucket.

Signed-off-by: Pei Xiao <xiaopei01@kylinos.cn>
Fixes: ac10a96 ("bcachefs: Some fixes for building in userspace")
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The perf_test does not check the number of iterations and threads
when it is zero. If nr_thread is 0, the perf test will keep
waiting for wakekup. If iteration is 0, it will cause exception
of division by zero. This can be reproduced by:
  echo "rand_insert 0 1" > /sys/fs/bcachefs/${uuid}/perf_test
or
  echo "rand_insert 1 0" > /sys/fs/bcachefs/${uuid}/perf_test

Fixes: 1c6fdbd ("bcachefs: Initial commit")
Signed-off-by: Hongbo Li <lihongbo22@huawei.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
When allocating new btree nodes, we were leaving them on the freeable
list - unlocked - allowing them to be reclaimed: ouch.

Additionally, bch2_btree_node_free_never_used() ->
bch2_btree_node_hash_remove was putting it on the freelist, while
bch2_btree_node_free_never_used() was putting it back on the btree
update reserve list - ouch.

Originally, the code was written to always keep btree nodes on a list -
live or freeable - and this worked when new nodes were kept locked.

But now with the cycle detector, we can't keep nodes locked that aren't
tracked by the cycle detector; and this is fine as long as they're not
reachable.

We also have better and more robust leak detection now, with memory
allocation profiling, so the original justification no longer applies.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Change OPT_STR max value to be 1 less than the "ARRAY_SIZE" of "_choices"
array. As a result, remove -1 from (opt->max-1) in bch2_opt_to_text.

The "_choices" array is a null-terminated array, so computing the maximum
using "ARRAY_SIZE" without subtracting 1 yields an incorrect result. Since
bch2_opt_validate don't subtract 1, as bch2_opt_to_text does, values
bigger than the actual maximum would pass through option validation.

Reported-by: syzbot+bee87a0c3291c06aa8c6@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=bee87a0c3291c06aa8c6
Fixes: 63c4b25 ("bcachefs: Better superblock opt validation")
Suggested-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Piotr Zalewski <pZ010001011111@proton.me>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
If we error in data_update_init() after adding to the rhashtable of
outstanding promotes, kfree_rcu() is required.

Reported-by: Reed Riley <reed@riley.engineer>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
In the error recovery path of mlx5_vdpa_dev_add(), the cleanup is
executed and at the end put_device() is called which ends up calling
mlx5_vdpa_free(). This function will execute the same cleanup all over
again. Most resources support being cleaned up twice, but the recent
mlx5_vdpa_destroy_mr_resources() doesn't.

This change drops the explicit cleanup from within the
mlx5_vdpa_dev_add() and lets mlx5_vdpa_free() do its work.

This issue was discovered while trying to add 2 vdpa devices with the
same name:
$> vdpa dev add name vdpa-0 mgmtdev auxiliary/mlx5_core.sf.2
$> vdpa dev add name vdpa-0 mgmtdev auxiliary/mlx5_core.sf.3

... yields the following dump:

  BUG: kernel NULL pointer dereference, address: 00000000000000b8
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: Oops: 0000 [sophgo#1] SMP
  CPU: 4 UID: 0 PID: 2811 Comm: vdpa Not tainted 6.12.0-rc6 sophgo#1
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
  RIP: 0010:destroy_workqueue+0xe/0x2a0
  Code: ...
  RSP: 0018:ffff88814920b9a8 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: ffff888105c10000 RCX: 0000000000000000
  RDX: 0000000000000001 RSI: ffff888100400168 RDI: 0000000000000000
  RBP: 0000000000000000 R08: ffff888100120c00 R09: ffffffff828578c0
  R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
  R13: ffff888131fd99a0 R14: 0000000000000000 R15: ffff888105c10580
  FS:  00007fdfa6b4f740(0000) GS:ffff88852ca00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00000000000000b8 CR3: 000000018db09006 CR4: 0000000000372eb0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   <TASK>
   ? __die+0x20/0x60
   ? page_fault_oops+0x150/0x3e0
   ? exc_page_fault+0x74/0x130
   ? asm_exc_page_fault+0x22/0x30
   ? destroy_workqueue+0xe/0x2a0
   mlx5_vdpa_destroy_mr_resources+0x2b/0x40 [mlx5_vdpa]
   mlx5_vdpa_free+0x45/0x150 [mlx5_vdpa]
   vdpa_release_dev+0x1e/0x50 [vdpa]
   device_release+0x31/0x90
   kobject_put+0x8d/0x230
   mlx5_vdpa_dev_add+0x328/0x8b0 [mlx5_vdpa]
   vdpa_nl_cmd_dev_add_set_doit+0x2b8/0x4c0 [vdpa]
   genl_family_rcv_msg_doit+0xd0/0x120
   genl_rcv_msg+0x180/0x2b0
   ? __vdpa_alloc_device+0x1b0/0x1b0 [vdpa]
   ? genl_family_rcv_msg_dumpit+0xf0/0xf0
   netlink_rcv_skb+0x54/0x100
   genl_rcv+0x24/0x40
   netlink_unicast+0x1fc/0x2d0
   netlink_sendmsg+0x1e4/0x410
   __sock_sendmsg+0x38/0x60
   ? sockfd_lookup_light+0x12/0x60
   __sys_sendto+0x105/0x160
   ? __count_memcg_events+0x53/0xe0
   ? handle_mm_fault+0x100/0x220
   ? do_user_addr_fault+0x40d/0x620
   __x64_sys_sendto+0x20/0x30
   do_syscall_64+0x4c/0x100
   entry_SYSCALL_64_after_hwframe+0x4b/0x53
  RIP: 0033:0x7fdfa6c66b57
  Code: ...
  RSP: 002b:00007ffeace22998 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
  RAX: ffffffffffffffda RBX: 000055a498608350 RCX: 00007fdfa6c66b57
  RDX: 000000000000006c RSI: 000055a498608350 RDI: 0000000000000003
  RBP: 00007ffeace229c0 R08: 00007fdfa6d35200 R09: 000000000000000c
  R10: 0000000000000000 R11: 0000000000000202 R12: 000055a4986082a0
  R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffeace233f3
   </TASK>
  Modules linked in: ...
  CR2: 00000000000000b8

Fixes: 6211165 ("vdpa/mlx5: Postpone MR deletion")
Signed-off-by: Dragos Tatulea <dtatulea@nvidia.com>
Message-Id: <20241105185101.1323272-2-dtatulea@nvidia.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Acked-by: Eugenio Pérez <eperezma@redhat.com>
@inochisa
Copy link
Collaborator

inochisa commented Feb 14, 2025

@TroyMitchell911 Thanks for your pull, but this is not suitable for this repository.

This repository only maintains things related to the mainline. No vendor support is provided.

If you want to contribute to vendor support, I think you should open your pull in sophgo/linux_5.10.
If you want to contribute to the mainline kernel, please send your patch to the linux kernel mail list.

@inochisa
Copy link
Collaborator

inochisa commented Feb 14, 2025

Closed due to not suitable for this repository.

@inochisa inochisa closed this Feb 14, 2025
@unicornx unicornx changed the title Port cv1800b/sg2000/sg2002 to Linux v6.12 WIP: Port cv1800b/sg2000/sg2002 to Linux v6.12 Feb 14, 2025
xingxg2022 pushed a commit that referenced this pull request Feb 14, 2025
In "one-shot" mode, turbostat
1. takes a counter snapshot
2. forks and waits for a child
3. takes the end counter snapshot and prints the result.

But turbostat counter snapshots currently use affinity to travel
around the system so that counter reads are "local", and this
affinity must be cleared between #1 and #2 above.

The offending commit removed that reset that allowed the child
to run on cpu_present_set.

Fix that issue, and improve upon the original by using
cpu_possible_set for the child.  This allows the child
to also run on CPUs that hotplug online during its runtime.

Reported-by: Zhang Rui <rui.zhang@intel.com>
Fixes: 7bb3fe2 ("tools/power/turbostat: Obey allowed CPUs during startup")
Signed-off-by: Len Brown <len.brown@intel.com>
xingxg2022 pushed a commit that referenced this pull request Feb 14, 2025
libtraceevent parses and returns an array of argument fields, sometimes
larger than RAW_SYSCALL_ARGS_NUM (6) because it includes "__syscall_nr",
idx will traverse to index 6 (7th element) whereas sc->fmt->arg holds 6
elements max, creating an out-of-bounds access. This runtime error is
found by UBsan. The error message:

  $ sudo UBSAN_OPTIONS=print_stacktrace=1 ./perf trace -a --max-events=1
  builtin-trace.c:1966:35: runtime error: index 6 out of bounds for type 'syscall_arg_fmt [6]'
    #0 0x5c04956be5fe in syscall__alloc_arg_fmts /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:1966
    #1 0x5c04956c0510 in trace__read_syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2110
    #2 0x5c04956c372b in trace__syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2436
    #3 0x5c04956d2f39 in trace__init_syscalls_bpf_prog_array_maps /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:3897
    #4 0x5c04956d6d25 in trace__run /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:4335
    #5 0x5c04956e112e in cmd_trace /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:5502
    #6 0x5c04956eda7d in run_builtin /home/howard/hw/linux-perf/tools/perf/perf.c:351
    #7 0x5c04956ee0a8 in handle_internal_command /home/howard/hw/linux-perf/tools/perf/perf.c:404
    #8 0x5c04956ee37f in run_argv /home/howard/hw/linux-perf/tools/perf/perf.c:448
    #9 0x5c04956ee8e9 in main /home/howard/hw/linux-perf/tools/perf/perf.c:556
    #10 0x79eb3622a3b7 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
    torvalds#11 0x79eb3622a47a in __libc_start_main_impl ../csu/libc-start.c:360
    torvalds#12 0x5c04955422d4 in _start (/home/howard/hw/linux-perf/tools/perf/perf+0x4e02d4) (BuildId: 5b6cab2d59e96a4341741765ad6914a4d784dbc6)

     0.000 ( 0.014 ms): Chrome_ChildIO/117244 write(fd: 238, buf: !, count: 1)                                      = 1

Fixes: 5e58fcf ("perf trace: Allow allocating sc->arg_fmt even without the syscall tracepoint")
Signed-off-by: Howard Chu <howardchu95@gmail.com>
Link: https://lore.kernel.org/r/20250122025519.361873-1-howardchu95@gmail.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
xingxg2022 pushed a commit that referenced this pull request Feb 14, 2025
This fixes the following hard lockup in isolate_lru_folios() during memory
reclaim.  If the LRU mostly contains ineligible folios this may trigger
watchdog.

watchdog: Watchdog detected hard LOCKUP on cpu 173
RIP: 0010:native_queued_spin_lock_slowpath+0x255/0x2a0
Call Trace:
	_raw_spin_lock_irqsave+0x31/0x40
	folio_lruvec_lock_irqsave+0x5f/0x90
	folio_batch_move_lru+0x91/0x150
	lru_add_drain_per_cpu+0x1c/0x40
	process_one_work+0x17d/0x350
	worker_thread+0x27b/0x3a0
	kthread+0xe8/0x120
	ret_from_fork+0x34/0x50
	ret_from_fork_asm+0x1b/0x30

lruvec->lru_lock owner:

PID: 2865     TASK: ffff888139214d40  CPU: 40   COMMAND: "kswapd0"
 #0 [fffffe0000945e60] crash_nmi_callback at ffffffffa567a555
 #1 [fffffe0000945e68] nmi_handle at ffffffffa563b171
 #2 [fffffe0000945eb0] default_do_nmi at ffffffffa6575920
 #3 [fffffe0000945ed0] exc_nmi at ffffffffa6575af4
 #4 [fffffe0000945ef0] end_repeat_nmi at ffffffffa6601dde
    [exception RIP: isolate_lru_folios+403]
    RIP: ffffffffa597df53  RSP: ffffc90006fb7c28  RFLAGS: 00000002
    RAX: 0000000000000001  RBX: ffffc90006fb7c60  RCX: ffffea04a2196f88
    RDX: ffffc90006fb7c60  RSI: ffffc90006fb7c60  RDI: ffffea04a2197048
    RBP: ffff88812cbd3010   R8: ffffea04a2197008   R9: 0000000000000001
    R10: 0000000000000000  R11: 0000000000000001  R12: ffffea04a2197008
    R13: ffffea04a2197048  R14: ffffc90006fb7de8  R15: 0000000003e3e937
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
    <NMI exception stack>
 #5 [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
 #6 [ffffc90006fb7cf8] shrink_active_list at ffffffffa597f788
 #7 [ffffc90006fb7da8] balance_pgdat at ffffffffa5986db0
 #8 [ffffc90006fb7ec0] kswapd at ffffffffa5987354
 #9 [ffffc90006fb7ef8] kthread at ffffffffa5748238
crash>

Scenario:
User processe are requesting a large amount of memory and keep page active.
Then a module continuously requests memory from ZONE_DMA32 area.
Memory reclaim will be triggered due to ZONE_DMA32 watermark alarm reached.
However pages in the LRU(active_anon) list are mostly from
the ZONE_NORMAL area.

Reproduce:
Terminal 1: Construct to continuously increase pages active(anon).
mkdir /tmp/memory
mount -t tmpfs -o size=1024000M tmpfs /tmp/memory
dd if=/dev/zero of=/tmp/memory/block bs=4M
tail /tmp/memory/block

Terminal 2:
vmstat -a 1
active will increase.
procs ---memory--- ---swap-- ---io---- -system-- ---cpu--- ...
 r  b   swpd   free  inact active   si   so    bi    bo
 1  0   0 1445623076 45898836 83646008    0    0     0
 1  0   0 1445623076 43450228 86094616    0    0     0
 1  0   0 1445623076 41003480 88541364    0    0     0
 1  0   0 1445623076 38557088 90987756    0    0     0
 1  0   0 1445623076 36109688 93435156    0    0     0
 1  0   0 1445619552 33663256 95881632    0    0     0
 1  0   0 1445619804 31217140 98327792    0    0     0
 1  0   0 1445619804 28769988 100774944    0    0     0
 1  0   0 1445619804 26322348 103222584    0    0     0
 1  0   0 1445619804 23875592 105669340    0    0     0

cat /proc/meminfo | head
Active(anon) increase.
MemTotal:       1579941036 kB
MemFree:        1445618500 kB
MemAvailable:   1453013224 kB
Buffers:            6516 kB
Cached:         128653956 kB
SwapCached:            0 kB
Active:         118110812 kB
Inactive:       11436620 kB
Active(anon):   115345744 kB
Inactive(anon):   945292 kB

When the Active(anon) is 115345744 kB, insmod module triggers
the ZONE_DMA32 watermark.

perf record -e vmscan:mm_vmscan_lru_isolate -aR
perf script
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=2
nr_skipped=2 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=29
nr_skipped=29 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon

See nr_scanned=28835844.
28835844 * 4k = 115343376KB approximately equal to 115345744 kB.

If increase Active(anon) to 1000G then insmod module triggers
the ZONE_DMA32 watermark. hard lockup will occur.

In my device nr_scanned = 0000000003e3e937 when hard lockup.
Convert to memory size 0x0000000003e3e937 * 4KB = 261072092 KB.

   [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
    ffffc90006fb7c30: 0000000000000020 0000000000000000
    ffffc90006fb7c40: ffffc90006fb7d40 ffff88812cbd3000
    ffffc90006fb7c50: ffffc90006fb7d30 0000000106fb7de8
    ffffc90006fb7c60: ffffea04a2197008 ffffea0006ed4a48
    ffffc90006fb7c70: 0000000000000000 0000000000000000
    ffffc90006fb7c80: 0000000000000000 0000000000000000
    ffffc90006fb7c90: 0000000000000000 0000000000000000
    ffffc90006fb7ca0: 0000000000000000 0000000003e3e937
    ffffc90006fb7cb0: 0000000000000000 0000000000000000
    ffffc90006fb7cc0: 8d7c0b56b7874b00 ffff88812cbd3000

About the Fixes:
Why did it take eight years to be discovered?

The problem requires the following conditions to occur:
1. The device memory should be large enough.
2. Pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area.
3. The memory in ZONE_DMA32 needs to reach the watermark.

If the memory is not large enough, or if the usage design of ZONE_DMA32
area memory is reasonable, this problem is difficult to detect.

notes:
The problem is most likely to occur in ZONE_DMA32 and ZONE_NORMAL,
but other suitable scenarios may also trigger the problem.

Link: https://lkml.kernel.org/r/20241119060842.274072-1-liuye@kylinos.cn
Fixes: b2e1875 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Signed-off-by: liuye <liuye@kylinos.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Yang Shi <yang@os.amperecomputing.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
inochisa pushed a commit that referenced this pull request Mar 1, 2025
A regression was caused by commit e4b5ccd ("drm/v3d: Ensure job pointer is set to NULL
after job completion"), but this commit is not yet in next-fixes,
fast-forward it.

Try #2, first one didn't have v6.13 in it.

Signed-off-by: Maarten Lankhorst <dev@lankhorst.se>
inochisa pushed a commit that referenced this pull request Mar 1, 2025
Add read memory barrier to ensure the order of operations when accessing
control queue descriptors. Specifically, we want to avoid cases where loads
can be reordered:

1. Load #1 is dispatched to read descriptor flags.
2. Load #2 is dispatched to read some other field from the descriptor.
3. Load #2 completes, accessing memory/cache at a point in time when the DD
   flag is zero.
4. NIC DMA overwrites the descriptor, now the DD flag is one.
5. Any fields loaded before step 4 are now inconsistent with the actual
   descriptor state.

Add read memory barrier between steps 1 and 2, so that load #2 is not
executed until load #1 has completed.

Fixes: 8077c72 ("idpf: add controlq init and reset checks")
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Suggested-by: Lance Richardson <rlance@google.com>
Signed-off-by: Emil Tantilov <emil.s.tantilov@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
inochisa pushed a commit that referenced this pull request Apr 7, 2025
Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding
the per-CPU acomp_ctx mutex.  crypto_free_acomp() then holds scomp_lock
(through crypto_exit_scomp_ops_async()).

On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through
crypto_scomp_init_tfm()), and then allocates memory.  If the allocation
results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.

The above dependencies can cause an ABBA deadlock.  For example in the
following scenario:

(1) Task A running on CPU #1:
    crypto_alloc_acomp_node()
      Holds scomp_lock
      Enters reclaim
      Reads per_cpu_ptr(pool->acomp_ctx, 1)

(2) Task A is descheduled

(3) CPU #1 goes offline
    zswap_cpu_comp_dead(CPU #1)
      Holds per_cpu_ptr(pool->acomp_ctx, 1))
      Calls crypto_free_acomp()
      Waits for scomp_lock

(4) Task A running on CPU #2:
      Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1
      DEADLOCK

Since there is no requirement to call crypto_free_acomp() with the per-CPU
acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is
unlocked.  Also move the acomp_request_free() and kfree() calls for
consistency and to avoid any potential sublte locking dependencies in the
future.

With this, only setting acomp_ctx fields to NULL occurs with the mutex
held.  This is similar to how zswap_cpu_comp_prepare() only initializes
acomp_ctx fields with the mutex held, after performing all allocations
before holding the mutex.

Opportunistically, move the NULL check on acomp_ctx so that it takes place
before the mutex dereference.

Link: https://lkml.kernel.org/r/20250226185625.2672936-1-yosry.ahmed@linux.dev
Fixes: 12dcb0e ("mm: zswap: properly synchronize freeing resources during CPU hotunplug")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Co-developed-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reported-by: syzbot+1a517ccfcbc6a7ab0f82@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67bcea51.050a0220.bbfd1.0096.GAE@google.com/
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Nhat Pham <nphamcs@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
inochisa pushed a commit that referenced this pull request Apr 7, 2025
Two fixes from the recent logging changes:

bch2_inconsistent(), bch2_fs_inconsistent() be called from interrupt
context, or with rcu_read_lock() held.

The one syzbot found is in
  bch2_bkey_pick_read_device
  bch2_dev_rcu
  bch2_fs_inconsistent

We're starting to switch to lift the printbufs up to higher levels so we
can emit better log messages and print them all in one go (avoid
garbling), so that conversion will help with spotting these in the
future; when we declare a printbuf it must be flagged if we're in an
atomic context.

Secondly, in btree_node_write_endio:

00085 BUG: sleeping function called from invalid context at include/linux/sched/mm.h:321
00085 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 618, name: bch-reclaim/fa6
00085 preempt_count: 10001, expected: 0
00085 RCU nest depth: 0, expected: 0
00085 4 locks held by bch-reclaim/fa6/618:
00085  #0: ffffff80d7ccad68 (&j->reclaim_lock){+.+.}-{4:4}, at: bch2_journal_reclaim_thread+0x84/0x198
00085  #1: ffffff80d7c84218 (&c->btree_trans_barrier){.+.+}-{0:0}, at: __bch2_trans_get+0x1c0/0x440
00085  #2: ffffff80cd3f8140 (bcachefs_btree){+.+.}-{0:0}, at: __bch2_trans_get+0x22c/0x440
00085  #3: ffffff80c3823c20 (&vblk->vqs[i].lock){-.-.}-{3:3}, at: virtblk_done+0x58/0x130
00085 irq event stamp: 328
00085 hardirqs last  enabled at (327): [<ffffffc080073a14>] finish_task_switch.isra.0+0xbc/0x2a0
00085 hardirqs last disabled at (328): [<ffffffc080971a10>] el1_interrupt+0x20/0x60
00085 softirqs last  enabled at (0): [<ffffffc08002f920>] copy_process+0x7c8/0x2118
00085 softirqs last disabled at (0): [<0000000000000000>] 0x0
00085 Preemption disabled at:
00085 [<ffffffc08003ada0>] irq_enter_rcu+0x18/0x90
00085 CPU: 8 UID: 0 PID: 618 Comm: bch-reclaim/fa6 Not tainted 6.14.0-rc6-ktest-g04630bde23e8 #18798
00085 Hardware name: linux,dummy-virt (DT)
00085 Call trace:
00085  show_stack+0x1c/0x30 (C)
00085  dump_stack_lvl+0x84/0xc0
00085  dump_stack+0x14/0x20
00085  __might_resched+0x180/0x288
00085  __might_sleep+0x4c/0x88
00085  __kmalloc_node_track_caller_noprof+0x34c/0x3e0
00085  krealloc_noprof+0x1a0/0x2d8
00085  bch2_printbuf_make_room+0x9c/0x120
00085  bch2_prt_printf+0x60/0x1b8
00085  btree_node_write_endio+0x1b0/0x2d8
00085  bio_endio+0x138/0x1f0
00085  btree_node_write_endio+0xe8/0x2d8
00085  bio_endio+0x138/0x1f0
00085  blk_update_request+0x220/0x4c0
00085  blk_mq_end_request+0x28/0x148
00085  virtblk_request_done+0x64/0xe8
00085  blk_mq_complete_request+0x34/0x40
00085  virtblk_done+0x78/0x130
00085  vring_interrupt+0x6c/0xb0
00085  __handle_irq_event_percpu+0x8c/0x2e0
00085  handle_irq_event+0x50/0xb0
00085  handle_fasteoi_irq+0xc4/0x250
00085  handle_irq_desc+0x44/0x60
00085  generic_handle_domain_irq+0x20/0x30
00085  gic_handle_irq+0x54/0xc8
00085  call_on_irq_stack+0x24/0x40

Reported-by: syzbot+c82cd2906e2f192410bb@syzkaller.appspotmail.com
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
inochisa pushed a commit that referenced this pull request Apr 7, 2025
v2:
- Created a single error handling unlock and exit in veth_pool_store
- Greatly expanded commit message with previous explanatory-only text

Summary: Use rtnl_mutex to synchronize veth_pool_store with itself,
ibmveth_close and ibmveth_open, preventing multiple calls in a row to
napi_disable.

Background: Two (or more) threads could call veth_pool_store through
writing to /sys/devices/vio/30000002/pool*/*. You can do this easily
with a little shell script. This causes a hang.

I configured LOCKDEP, compiled ibmveth.c with DEBUG, and built a new
kernel. I ran this test again and saw:

    Setting pool0/active to 0
    Setting pool1/active to 1
    [   73.911067][ T4365] ibmveth 30000002 eth0: close starting
    Setting pool1/active to 1
    Setting pool1/active to 0
    [   73.911367][ T4366] ibmveth 30000002 eth0: close starting
    [   73.916056][ T4365] ibmveth 30000002 eth0: close complete
    [   73.916064][ T4365] ibmveth 30000002 eth0: open starting
    [  110.808564][  T712] systemd-journald[712]: Sent WATCHDOG=1 notification.
    [  230.808495][  T712] systemd-journald[712]: Sent WATCHDOG=1 notification.
    [  243.683786][  T123] INFO: task stress.sh:4365 blocked for more than 122 seconds.
    [  243.683827][  T123]       Not tainted 6.14.0-01103-g2df0c02dab82-dirty #8
    [  243.683833][  T123] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
    [  243.683838][  T123] task:stress.sh       state:D stack:28096 pid:4365  tgid:4365  ppid:4364   task_flags:0x400040 flags:0x00042000
    [  243.683852][  T123] Call Trace:
    [  243.683857][  T123] [c00000000c38f690] [0000000000000001] 0x1 (unreliable)
    [  243.683868][  T123] [c00000000c38f840] [c00000000001f908] __switch_to+0x318/0x4e0
    [  243.683878][  T123] [c00000000c38f8a0] [c000000001549a70] __schedule+0x500/0x12a0
    [  243.683888][  T123] [c00000000c38f9a0] [c00000000154a878] schedule+0x68/0x210
    [  243.683896][  T123] [c00000000c38f9d0] [c00000000154ac80] schedule_preempt_disabled+0x30/0x50
    [  243.683904][  T123] [c00000000c38fa00] [c00000000154dbb0] __mutex_lock+0x730/0x10f0
    [  243.683913][  T123] [c00000000c38fb10] [c000000001154d40] napi_enable+0x30/0x60
    [  243.683921][  T123] [c00000000c38fb40] [c000000000f4ae94] ibmveth_open+0x68/0x5dc
    [  243.683928][  T123] [c00000000c38fbe0] [c000000000f4aa20] veth_pool_store+0x220/0x270
    [  243.683936][  T123] [c00000000c38fc70] [c000000000826278] sysfs_kf_write+0x68/0xb0
    [  243.683944][  T123] [c00000000c38fcb0] [c0000000008240b8] kernfs_fop_write_iter+0x198/0x2d0
    [  243.683951][  T123] [c00000000c38fd00] [c00000000071b9ac] vfs_write+0x34c/0x650
    [  243.683958][  T123] [c00000000c38fdc0] [c00000000071bea8] ksys_write+0x88/0x150
    [  243.683966][  T123] [c00000000c38fe10] [c0000000000317f4] system_call_exception+0x124/0x340
    [  243.683973][  T123] [c00000000c38fe50] [c00000000000d05c] system_call_vectored_common+0x15c/0x2ec
    ...
    [  243.684087][  T123] Showing all locks held in the system:
    [  243.684095][  T123] 1 lock held by khungtaskd/123:
    [  243.684099][  T123]  #0: c00000000278e370 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x50/0x248
    [  243.684114][  T123] 4 locks held by stress.sh/4365:
    [  243.684119][  T123]  #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150
    [  243.684132][  T123]  #1: c000000041aea888 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x154/0x2d0
    [  243.684143][  T123]  #2: c0000000366fb9a8 (kn->active#64){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x160/0x2d0
    [  243.684155][  T123]  #3: c000000035ff4cb8 (&dev->lock){+.+.}-{3:3}, at: napi_enable+0x30/0x60
    [  243.684166][  T123] 5 locks held by stress.sh/4366:
    [  243.684170][  T123]  #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150
    [  243.684183][  T123]  #1: c00000000aee2288 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x154/0x2d0
    [  243.684194][  T123]  #2: c0000000366f4ba8 (kn->active#64){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x160/0x2d0
    [  243.684205][  T123]  #3: c000000035ff4cb8 (&dev->lock){+.+.}-{3:3}, at: napi_disable+0x30/0x60
    [  243.684216][  T123]  #4: c0000003ff9bbf18 (&rq->__lock){-.-.}-{2:2}, at: __schedule+0x138/0x12a0

From the ibmveth debug, two threads are calling veth_pool_store, which
calls ibmveth_close and ibmveth_open. Here's the sequence:

  T4365             T4366
  ----------------- ----------------- ---------
  veth_pool_store   veth_pool_store
                    ibmveth_close
  ibmveth_close
  napi_disable
                    napi_disable
  ibmveth_open
  napi_enable                         <- HANG

ibmveth_close calls napi_disable at the top and ibmveth_open calls
napi_enable at the top.

https://docs.kernel.org/networking/napi.html]] says

  The control APIs are not idempotent. Control API calls are safe
  against concurrent use of datapath APIs but an incorrect sequence of
  control API calls may result in crashes, deadlocks, or race
  conditions. For example, calling napi_disable() multiple times in a
  row will deadlock.

In the normal open and close paths, rtnl_mutex is acquired to prevent
other callers. This is missing from veth_pool_store. Use rtnl_mutex in
veth_pool_store fixes these hangs.

Signed-off-by: Dave Marquardt <davemarq@linux.ibm.com>
Fixes: 860f242 ("[PATCH] ibmveth change buffer pools dynamically")
Reviewed-by: Nick Child <nnac123@linux.ibm.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://patch.msgid.link/20250402154403.386744-1-davemarq@linux.ibm.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
unicornx pushed a commit that referenced this pull request May 19, 2025
…ux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 fixes for 6.15, round #2

 - Single fix for broken usage of 'multi-MIDR' infrastructure in PI
   code, adding an open-coded erratum check for everyone's favorite pile
   of sand: Cavium ThunderX
unicornx pushed a commit that referenced this pull request May 19, 2025
…unload

Kernel panic occurs when a devmem TCP socket is closed after NIC module
is unloaded.

This is Devmem TCP unregistration scenarios. number is an order.
(a)netlink socket close    (b)pp destroy    (c)uninstall    result
1                          2                3               OK
1                          3                2               (d)Impossible
2                          1                3               OK
3                          1                2               (e)Kernel panic
2                          3                1               (d)Impossible
3                          2                1               (d)Impossible

(a) netdev_nl_sock_priv_destroy() is called when devmem TCP socket is
    closed.
(b) page_pool_destroy() is called when the interface is down.
(c) mp_ops->uninstall() is called when an interface is unregistered.
(d) There is no scenario in mp_ops->uninstall() is called before
    page_pool_destroy().
    Because unregister_netdevice_many_notify() closes interfaces first
    and then calls mp_ops->uninstall().
(e) netdev_nl_sock_priv_destroy() accesses struct net_device to acquire
    netdev_lock().
    But if the interface module has already been removed, net_device
    pointer is invalid, so it causes kernel panic.

In summary, there are only 3 possible scenarios.
 A. sk close -> pp destroy -> uninstall.
 B. pp destroy -> sk close -> uninstall.
 C. pp destroy -> uninstall -> sk close.

Case C is a kernel panic scenario.

In order to fix this problem, It makes mp_dmabuf_devmem_uninstall() set
binding->dev to NULL.
It indicates an bound net_device was unregistered.

It makes netdev_nl_sock_priv_destroy() do not acquire netdev_lock()
if binding->dev is NULL.

A new binding->lock is added to protect a dev of a binding.
So, lock ordering is like below.
 priv->lock
 netdev_lock(dev)
 binding->lock

Tests:
Scenario A:
    ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \
        -v 7 -t 1 -q 1 &
    pid=$!
    sleep 10
    kill $pid
    ip link set $interface down
    modprobe -rv $module

Scenario B:
    ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \
        -v 7 -t 1 -q 1 &
    pid=$!
    sleep 10
    ip link set $interface down
    kill $pid
    modprobe -rv $module

Scenario C:
    ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \
        -v 7 -t 1 -q 1 &
    pid=$!
    sleep 10
    modprobe -rv $module
    sleep 5
    kill $pid

Splat looks like:
Oops: general protection fault, probably for non-canonical address 0xdffffc001fffa9f7: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI
KASAN: probably user-memory-access in range [0x00000000fffd4fb8-0x00000000fffd4fbf]
CPU: 0 UID: 0 PID: 2041 Comm: ncdevmem Tainted: G    B   W           6.15.0-rc1+ #2 PREEMPT(undef)  0947ec89efa0fd68838b78e36aa1617e97ff5d7f
Tainted: [B]=BAD_PAGE, [W]=WARN
RIP: 0010:__mutex_lock (./include/linux/sched.h:2244 kernel/locking/mutex.c:400 kernel/locking/mutex.c:443 kernel/locking/mutex.c:605 kernel/locking/mutex.c:746)
Code: ea 03 80 3c 02 00 0f 85 4f 13 00 00 49 8b 1e 48 83 e3 f8 74 6a 48 b8 00 00 00 00 00 fc ff df 48 8d 7b 34 48 89 fa 48 c1 ea 03 <0f> b6 f
RSP: 0018:ffff88826f7ef730 EFLAGS: 00010203
RAX: dffffc0000000000 RBX: 00000000fffd4f88 RCX: ffffffffaa9bc811
RDX: 000000001fffa9f7 RSI: 0000000000000008 RDI: 00000000fffd4fbc
RBP: ffff88826f7ef8b0 R08: 0000000000000000 R09: ffffed103e6aa1a4
R10: 0000000000000007 R11: ffff88826f7ef442 R12: fffffbfff669f65e
R13: ffff88812a830040 R14: ffff8881f3550d20 R15: 00000000fffd4f88
FS:  0000000000000000(0000) GS:ffff888866c05000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000563bed0cb288 CR3: 00000001a7c98000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
 ...
 netdev_nl_sock_priv_destroy (net/core/netdev-genl.c:953 (discriminator 3))
 genl_release (net/netlink/genetlink.c:653 net/netlink/genetlink.c:694 net/netlink/genetlink.c:705)
 ...
 netlink_release (net/netlink/af_netlink.c:737)
 ...
 __sock_release (net/socket.c:647)
 sock_close (net/socket.c:1393)

Fixes: 1d22d30 ("net: drop rtnl_lock for queue_mgmt operations")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Acked-by: Stanislav Fomichev <sdf@fomichev.me>
Link: https://patch.msgid.link/20250514154028.1062909-1-ap420073@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
inochisa pushed a commit that referenced this pull request Jun 10, 2025
Add a compile-time check that `*$ptr` is of the type of `$type->$($f)*`.
Rename those placeholders for clarity.

Given the incorrect usage:

> diff --git a/rust/kernel/rbtree.rs b/rust/kernel/rbtree.rs
> index 8d978c8..6a7089149878 100644
> --- a/rust/kernel/rbtree.rs
> +++ b/rust/kernel/rbtree.rs
> @@ -329,7 +329,7 @@ fn raw_entry(&mut self, key: &K) -> RawEntry<'_, K, V> {
>          while !(*child_field_of_parent).is_null() {
>              let curr = *child_field_of_parent;
>              // SAFETY: All links fields we create are in a `Node<K, V>`.
> -            let node = unsafe { container_of!(curr, Node<K, V>, links) };
> +            let node = unsafe { container_of!(curr, Node<K, V>, key) };
>
>              // SAFETY: `node` is a non-null node so it is valid by the type invariants.
>              match key.cmp(unsafe { &(*node).key }) {

this patch produces the compilation error:

> error[E0308]: mismatched types
>    --> rust/kernel/lib.rs:220:45
>     |
> 220 |         $crate::assert_same_type(field_ptr, (&raw const (*container_ptr).$($fields)*).cast_mut());
>     |         ------------------------ ---------  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected `*mut rb_node`, found `*mut K`
>     |         |                        |
>     |         |                        expected all arguments to be this `*mut bindings::rb_node` type because they need to match the type of this parameter
>     |         arguments to this function are incorrect
>     |
>    ::: rust/kernel/rbtree.rs:270:6
>     |
> 270 | impl<K, V> RBTree<K, V>
>     |      - found this type parameter
> ...
> 332 |             let node = unsafe { container_of!(curr, Node<K, V>, key) };
>     |                                 ------------------------------------ in this macro invocation
>     |
>     = note: expected raw pointer `*mut bindings::rb_node`
>                found raw pointer `*mut K`
> note: function defined here
>    --> rust/kernel/lib.rs:227:8
>     |
> 227 | pub fn assert_same_type<T>(_: T, _: T) {}
>     |        ^^^^^^^^^^^^^^^^ -  ----  ---- this parameter needs to match the `*mut bindings::rb_node` type of parameter #1
>     |                         |  |
>     |                         |  parameter #2 needs to match the `*mut bindings::rb_node` type of this parameter
>     |                         parameter #1 and parameter #2 both reference this parameter `T`
>     = note: this error originates in the macro `container_of` (in Nightly builds, run with -Z macro-backtrace for more info)

[ We decided to go with a variation of v1 [1] that became v4, since it
  seems like the obvious approach, the error messages seem good enough
  and the debug performance should be fine, given the kernel is always
  built with -O2.

  In the future, we may want to make the helper non-hidden, with
  proper documentation, for others to use.

  [1] https://lore.kernel.org/rust-for-linux/CANiq72kQWNfSV0KK6qs6oJt+aGdgY=hXg=wJcmK3zYcokY1LNw@mail.gmail.com/

    - Miguel ]

Suggested-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/all/CAH5fLgh6gmqGBhPMi2SKn7mCmMWfOSiS0WP5wBuGPYh9ZTAiww@mail.gmail.com/
Signed-off-by: Tamir Duberstein <tamird@gmail.com>
Reviewed-by: Benno Lossin <lossin@kernel.org>
Link: https://lore.kernel.org/r/20250529-b4-container-of-type-check-v4-1-bf3a7ad73cec@gmail.com
[ Added intra-doc link. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
…/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 fixes for 6.16, take #2

- Rework of system register accessors for system registers that are
  directly writen to memory, so that sanitisation of the in-memory
  value happens at the correct time (after the read, or before the
  write). For convenience, RMW-style accessors are also provided.

- Multiple fixes for the so-called "arch-timer-edge-cases' selftest,
  which was always broken.
inochisa pushed a commit that referenced this pull request Jul 13, 2025
As-per the SBI specification, an SBI remote fence operation applies
to the entire address space if either:
1) start_addr and size are both 0
2) size is equal to 2^XLEN-1

>From the above, only #1 is checked by SBI SFENCE calls so fix the
size parameter check in SBI SFENCE calls to cover #2 as well.

Fixes: 13acfec ("RISC-V: KVM: Add remote HFENCE functions based on VCPU requests")
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Link: https://lore.kernel.org/r/20250605061458.196003-2-apatel@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
This patch fixes an issue seen in a large-scale deployment under heavy
incoming pkts where the aRFS flow wrongly matches a flow and reprograms the
NIC with wrong settings. That mis-steering causes RX-path latency spikes
and noisy neighbor effects when many connections collide on the same
hash (some of our production servers have 20-30K connections).

set_rps_cpu() calls ndo_rx_flow_steer() with flow_id that is calculated by
hashing the skb sized by the per rx-queue table size. This results in
multiple connections (even across different rx-queues) getting the same
hash value. The driver steer function modifies the wrong flow to use this
rx-queue, e.g.: Flow#1 is first added:
    Flow#1:  <ip1, port1, ip2, port2>, Hash 'h', q#10

Later when a new flow needs to be added:
	    Flow#2:  <ip3, port3, ip4, port4>, Hash 'h', q#20

The driver finds the hash 'h' from Flow#1 and updates it to use q#20. This
results in both flows getting un-optimized - packets for Flow#1 goes to
q#20, and then reprogrammed back to q#10 later and so on; and Flow #2
programming is never done as Flow#1 is matched first for all misses. Many
flows may wrongly share the same hash and reprogram rules of the original
flow each with their own q#.

Tested on two 144-core servers with 16K netperf sessions for 180s. Netperf
clients are pinned to cores 0-71 sequentially (so that wrong packets on q#s
72-143 can be measured). IRQs are set 1:1 for queues -> CPUs, enable XPS,
enable aRFS (global value is 144 * rps_flow_cnt).

Test notes about results from ice_rx_flow_steer():
---------------------------------------------------
1. "Skip:" counter increments here:
    if (fltr_info->q_index == rxq_idx ||
	arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
	    goto out;
2. "Add:" counter increments here:
    ret = arfs_entry->fltr_info.fltr_id;
    INIT_HLIST_NODE(&arfs_entry->list_entry);
3. "Update:" counter increments here:
    /* update the queue to forward to on an already existing flow */

Runtime comparison: original code vs with the patch for different
rps_flow_cnt values.

+-------------------------------+--------------+--------------+
| rps_flow_cnt                  |      512     |    2048      |
+-------------------------------+--------------+--------------+
| Ratio of Pkts on Good:Bad q's | 214 vs 822K  | 1.1M vs 980K |
| Avoid wrong aRFS programming  | 0 vs 310K    | 0 vs 30K     |
| CPU User                      | 216 vs 183   | 216 vs 206   |
| CPU System                    | 1441 vs 1171 | 1447 vs 1320 |
| CPU Softirq                   | 1245 vs 920  | 1238 vs 961  |
| CPU Total                     | 29 vs 22.7   | 29 vs 24.9   |
| aRFS Update                   | 533K vs 59   | 521K vs 32   |
| aRFS Skip                     | 82M vs 77M   | 7.2M vs 4.5M |
+-------------------------------+--------------+--------------+

A separate TCP_STREAM and TCP_RR with 1,4,8,16,64,128,256,512 connections
showed no performance degradation.

Some points on the patch/aRFS behavior:
1. Enabling full tuple matching ensures flows are always correctly matched,
   even with smaller hash sizes.
2. 5-6% drop in CPU utilization as the packets arrive at the correct CPUs
   and fewer calls to driver for programming on misses.
3. Larger hash tables reduces mis-steering due to more unique flow hashes,
   but still has clashes. However, with larger per-device rps_flow_cnt, old
   flows take more time to expire and new aRFS flows cannot be added if h/w
   limits are reached (rps_may_expire_flow() succeeds when 10*rps_flow_cnt
   pkts have been processed by this cpu that are not part of the flow).

Fixes: 28bf267 ("ice: Implement aRFS")
Signed-off-by: Krishna Kumar <krikku@gmail.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Tested-by: Rinitha S <sx.rinitha@intel.com> (A Contingent worker at Intel)
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
syzkaller reported a null-ptr-deref in sock_omalloc() while allocating
a CALIPSO option.  [0]

The NULL is of struct sock, which was fetched by sk_to_full_sk() in
calipso_req_setattr().

Since commit a1a5344 ("tcp: avoid two atomic ops for syncookies"),
reqsk->rsk_listener could be NULL when SYN Cookie is returned to its
client, as hinted by the leading SYN Cookie log.

Here are 3 options to fix the bug:

  1) Return 0 in calipso_req_setattr()
  2) Return an error in calipso_req_setattr()
  3) Alaways set rsk_listener

1) is no go as it bypasses LSM, but 2) effectively disables SYN Cookie
for CALIPSO.  3) is also no go as there have been many efforts to reduce
atomic ops and make TCP robust against DDoS.  See also commit 3b24d85
("tcp/dccp: do not touch listener sk_refcnt under synflood").

As of the blamed commit, SYN Cookie already did not need refcounting,
and no one has stumbled on the bug for 9 years, so no CALIPSO user will
care about SYN Cookie.

Let's return an error in calipso_req_setattr() and calipso_req_delattr()
in the SYN Cookie case.

This can be reproduced by [1] on Fedora and now connect() of nc times out.

[0]:
TCP: request_sock_TCPv6: Possible SYN flooding on port [::]:20002. Sending cookies.
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
CPU: 3 UID: 0 PID: 12262 Comm: syz.1.2611 Not tainted 6.14.0 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
RIP: 0010:read_pnet include/net/net_namespace.h:406 [inline]
RIP: 0010:sock_net include/net/sock.h:655 [inline]
RIP: 0010:sock_kmalloc+0x35/0x170 net/core/sock.c:2806
Code: 89 d5 41 54 55 89 f5 53 48 89 fb e8 25 e3 c6 fd e8 f0 91 e3 00 48 8d 7b 30 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 26 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b
RSP: 0018:ffff88811af89038 EFLAGS: 00010216
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff888105266400
RDX: 0000000000000006 RSI: ffff88800c890000 RDI: 0000000000000030
RBP: 0000000000000050 R08: 0000000000000000 R09: ffff88810526640e
R10: ffffed1020a4cc81 R11: ffff88810526640f R12: 0000000000000000
R13: 0000000000000820 R14: ffff888105266400 R15: 0000000000000050
FS:  00007f0653a07640(0000) GS:ffff88811af80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f863ba096f4 CR3: 00000000163c0005 CR4: 0000000000770ef0
PKRU: 80000000
Call Trace:
 <IRQ>
 ipv6_renew_options+0x279/0x950 net/ipv6/exthdrs.c:1288
 calipso_req_setattr+0x181/0x340 net/ipv6/calipso.c:1204
 calipso_req_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:597
 netlbl_req_setattr+0x18a/0x440 net/netlabel/netlabel_kapi.c:1249
 selinux_netlbl_inet_conn_request+0x1fb/0x320 security/selinux/netlabel.c:342
 selinux_inet_conn_request+0x1eb/0x2c0 security/selinux/hooks.c:5551
 security_inet_conn_request+0x50/0xa0 security/security.c:4945
 tcp_v6_route_req+0x22c/0x550 net/ipv6/tcp_ipv6.c:825
 tcp_conn_request+0xec8/0x2b70 net/ipv4/tcp_input.c:7275
 tcp_v6_conn_request+0x1e3/0x440 net/ipv6/tcp_ipv6.c:1328
 tcp_rcv_state_process+0xafa/0x52b0 net/ipv4/tcp_input.c:6781
 tcp_v6_do_rcv+0x8a6/0x1a40 net/ipv6/tcp_ipv6.c:1667
 tcp_v6_rcv+0x505e/0x5b50 net/ipv6/tcp_ipv6.c:1904
 ip6_protocol_deliver_rcu+0x17c/0x1da0 net/ipv6/ip6_input.c:436
 ip6_input_finish+0x103/0x180 net/ipv6/ip6_input.c:480
 NF_HOOK include/linux/netfilter.h:314 [inline]
 NF_HOOK include/linux/netfilter.h:308 [inline]
 ip6_input+0x13c/0x6b0 net/ipv6/ip6_input.c:491
 dst_input include/net/dst.h:469 [inline]
 ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline]
 ip6_rcv_finish+0xb6/0x490 net/ipv6/ip6_input.c:69
 NF_HOOK include/linux/netfilter.h:314 [inline]
 NF_HOOK include/linux/netfilter.h:308 [inline]
 ipv6_rcv+0xf9/0x490 net/ipv6/ip6_input.c:309
 __netif_receive_skb_one_core+0x12e/0x1f0 net/core/dev.c:5896
 __netif_receive_skb+0x1d/0x170 net/core/dev.c:6009
 process_backlog+0x41e/0x13b0 net/core/dev.c:6357
 __napi_poll+0xbd/0x710 net/core/dev.c:7191
 napi_poll net/core/dev.c:7260 [inline]
 net_rx_action+0x9de/0xde0 net/core/dev.c:7382
 handle_softirqs+0x19a/0x770 kernel/softirq.c:561
 do_softirq.part.0+0x36/0x70 kernel/softirq.c:462
 </IRQ>
 <TASK>
 do_softirq arch/x86/include/asm/preempt.h:26 [inline]
 __local_bh_enable_ip+0xf1/0x110 kernel/softirq.c:389
 local_bh_enable include/linux/bottom_half.h:33 [inline]
 rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline]
 __dev_queue_xmit+0xc2a/0x3c40 net/core/dev.c:4679
 dev_queue_xmit include/linux/netdevice.h:3313 [inline]
 neigh_hh_output include/net/neighbour.h:523 [inline]
 neigh_output include/net/neighbour.h:537 [inline]
 ip6_finish_output2+0xd69/0x1f80 net/ipv6/ip6_output.c:141
 __ip6_finish_output net/ipv6/ip6_output.c:215 [inline]
 ip6_finish_output+0x5dc/0xd60 net/ipv6/ip6_output.c:226
 NF_HOOK_COND include/linux/netfilter.h:303 [inline]
 ip6_output+0x24b/0x8d0 net/ipv6/ip6_output.c:247
 dst_output include/net/dst.h:459 [inline]
 NF_HOOK include/linux/netfilter.h:314 [inline]
 NF_HOOK include/linux/netfilter.h:308 [inline]
 ip6_xmit+0xbbc/0x20d0 net/ipv6/ip6_output.c:366
 inet6_csk_xmit+0x39a/0x720 net/ipv6/inet6_connection_sock.c:135
 __tcp_transmit_skb+0x1a7b/0x3b40 net/ipv4/tcp_output.c:1471
 tcp_transmit_skb net/ipv4/tcp_output.c:1489 [inline]
 tcp_send_syn_data net/ipv4/tcp_output.c:4059 [inline]
 tcp_connect+0x1c0c/0x4510 net/ipv4/tcp_output.c:4148
 tcp_v6_connect+0x156c/0x2080 net/ipv6/tcp_ipv6.c:333
 __inet_stream_connect+0x3a7/0xed0 net/ipv4/af_inet.c:677
 tcp_sendmsg_fastopen+0x3e2/0x710 net/ipv4/tcp.c:1039
 tcp_sendmsg_locked+0x1e82/0x3570 net/ipv4/tcp.c:1091
 tcp_sendmsg+0x2f/0x50 net/ipv4/tcp.c:1358
 inet6_sendmsg+0xb9/0x150 net/ipv6/af_inet6.c:659
 sock_sendmsg_nosec net/socket.c:718 [inline]
 __sock_sendmsg+0xf4/0x2a0 net/socket.c:733
 __sys_sendto+0x29a/0x390 net/socket.c:2187
 __do_sys_sendto net/socket.c:2194 [inline]
 __se_sys_sendto net/socket.c:2190 [inline]
 __x64_sys_sendto+0xe1/0x1c0 net/socket.c:2190
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0xc3/0x1d0 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f06553c47ed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f0653a06fc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f0655605fa0 RCX: 00007f06553c47ed
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000000000000b
RBP: 00007f065545db38 R08: 0000200000000140 R09: 000000000000001c
R10: f7384d4ea84b01bd R11: 0000000000000246 R12: 0000000000000000
R13: 00007f0655605fac R14: 00007f0655606038 R15: 00007f06539e7000
 </TASK>
Modules linked in:

[1]:
dnf install -y selinux-policy-targeted policycoreutils netlabel_tools procps-ng nmap-ncat
mount -t selinuxfs none /sys/fs/selinux
load_policy
netlabelctl calipso add pass doi:1
netlabelctl map del default
netlabelctl map add default address:::1 protocol:calipso,1
sysctl net.ipv4.tcp_syncookies=2
nc -l ::1 80 &
nc ::1 80

Fixes: e1adea9 ("calipso: Allow request sockets to be relabelled by the lsm.")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Reported-by: John Cheung <john.cs.hey@gmail.com>
Closes: https://lore.kernel.org/netdev/CAP=Rh=MvfhrGADy+-WJiftV2_WzMH4VEhEFmeT28qY+4yxNu4w@mail.gmail.com/
Signed-off-by: Kuniyuki Iwashima <kuniyu@google.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://patch.msgid.link/20250617224125.17299-1-kuni1840@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
…-flight

Reject migration of SEV{-ES} state if either the source or destination VM
is actively creating a vCPU, i.e. if kvm_vm_ioctl_create_vcpu() is in the
section between incrementing created_vcpus and online_vcpus.  The bulk of
vCPU creation runs _outside_ of kvm->lock to allow creating multiple vCPUs
in parallel, and so sev_info.es_active can get toggled from false=>true in
the destination VM after (or during) svm_vcpu_create(), resulting in an
SEV{-ES} VM effectively having a non-SEV{-ES} vCPU.

The issue manifests most visibly as a crash when trying to free a vCPU's
NULL VMSA page in an SEV-ES VM, but any number of things can go wrong.

  BUG: unable to handle page fault for address: ffffebde00000000
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: Oops: 0000 [#1] SMP KASAN NOPTI
  CPU: 227 UID: 0 PID: 64063 Comm: syz.5.60023 Tainted: G     U     O        6.15.0-smp-DEV #2 NONE
  Tainted: [U]=USER, [O]=OOT_MODULE
  Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 12.52.0-0 10/28/2024
  RIP: 0010:constant_test_bit arch/x86/include/asm/bitops.h:206 [inline]
  RIP: 0010:arch_test_bit arch/x86/include/asm/bitops.h:238 [inline]
  RIP: 0010:_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:142 [inline]
  RIP: 0010:PageHead include/linux/page-flags.h:866 [inline]
  RIP: 0010:___free_pages+0x3e/0x120 mm/page_alloc.c:5067
  Code: <49> f7 06 40 00 00 00 75 05 45 31 ff eb 0c 66 90 4c 89 f0 4c 39 f0
  RSP: 0018:ffff8984551978d0 EFLAGS: 00010246
  RAX: 0000777f80000001 RBX: 0000000000000000 RCX: ffffffff918aeb98
  RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffebde00000000
  RBP: 0000000000000000 R08: ffffebde00000007 R09: 1ffffd7bc0000000
  R10: dffffc0000000000 R11: fffff97bc0000001 R12: dffffc0000000000
  R13: ffff8983e19751a8 R14: ffffebde00000000 R15: 1ffffd7bc0000000
  FS:  0000000000000000(0000) GS:ffff89ee661d3000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffffebde00000000 CR3: 000000793ceaa000 CR4: 0000000000350ef0
  DR0: 0000000000000000 DR1: 0000000000000b5f DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Call Trace:
   <TASK>
   sev_free_vcpu+0x413/0x630 arch/x86/kvm/svm/sev.c:3169
   svm_vcpu_free+0x13a/0x2a0 arch/x86/kvm/svm/svm.c:1515
   kvm_arch_vcpu_destroy+0x6a/0x1d0 arch/x86/kvm/x86.c:12396
   kvm_vcpu_destroy virt/kvm/kvm_main.c:470 [inline]
   kvm_destroy_vcpus+0xd1/0x300 virt/kvm/kvm_main.c:490
   kvm_arch_destroy_vm+0x636/0x820 arch/x86/kvm/x86.c:12895
   kvm_put_kvm+0xb8e/0xfb0 virt/kvm/kvm_main.c:1310
   kvm_vm_release+0x48/0x60 virt/kvm/kvm_main.c:1369
   __fput+0x3e4/0x9e0 fs/file_table.c:465
   task_work_run+0x1a9/0x220 kernel/task_work.c:227
   exit_task_work include/linux/task_work.h:40 [inline]
   do_exit+0x7f0/0x25b0 kernel/exit.c:953
   do_group_exit+0x203/0x2d0 kernel/exit.c:1102
   get_signal+0x1357/0x1480 kernel/signal.c:3034
   arch_do_signal_or_restart+0x40/0x690 arch/x86/kernel/signal.c:337
   exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
   exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline]
   __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
   syscall_exit_to_user_mode+0x67/0xb0 kernel/entry/common.c:218
   do_syscall_64+0x7c/0x150 arch/x86/entry/syscall_64.c:100
   entry_SYSCALL_64_after_hwframe+0x76/0x7e
  RIP: 0033:0x7f87a898e969
   </TASK>
  Modules linked in: gq(O)
  gsmi: Log Shutdown Reason 0x03
  CR2: ffffebde00000000
  ---[ end trace 0000000000000000 ]---

Deliberately don't check for a NULL VMSA when freeing the vCPU, as crashing
the host is likely desirable due to the VMSA being consumed by hardware.
E.g. if KVM manages to allow VMRUN on the vCPU, hardware may read/write a
bogus VMSA page.  Accessing PFN 0 is "fine"-ish now that it's sequestered
away thanks to L1TF, but panicking in this scenario is preferable to
potentially running with corrupted state.

Reported-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Fixes: 0b020f5 ("KVM: SEV: Add support for SEV-ES intra host migration")
Fixes: b566393 ("KVM: SEV: Add support for SEV intra host migration")
Cc: stable@vger.kernel.org
Cc: James Houghton <jthoughton@google.com>
Cc: Peter Gonda <pgonda@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Tested-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: James Houghton <jthoughton@google.com>
Link: https://lore.kernel.org/r/20250602224459.41505-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
The issue arises when kzalloc() is invoked while holding umem_mutex or
any other lock acquired under umem_mutex. This is problematic because
kzalloc() can trigger fs_reclaim_aqcuire(), which may, in turn, invoke
mmu_notifier_invalidate_range_start(). This function can lead to
mlx5_ib_invalidate_range(), which attempts to acquire umem_mutex again,
resulting in a deadlock.

The problematic flow:
             CPU0                      |              CPU1
---------------------------------------|------------------------------------------------
mlx5_ib_dereg_mr()                     |
 → revoke_mr()                         |
   → mutex_lock(&umem_odp->umem_mutex) |
                                       | mlx5_mkey_cache_init()
                                       |  → mutex_lock(&dev->cache.rb_lock)
                                       |  → mlx5r_cache_create_ent_locked()
                                       |    → kzalloc(GFP_KERNEL)
                                       |      → fs_reclaim()
                                       |        → mmu_notifier_invalidate_range_start()
                                       |          → mlx5_ib_invalidate_range()
                                       |            → mutex_lock(&umem_odp->umem_mutex)
   → cache_ent_find_and_store()        |
     → mutex_lock(&dev->cache.rb_lock) |

Additionally, when kzalloc() is called from within
cache_ent_find_and_store(), we encounter the same deadlock due to
re-acquisition of umem_mutex.

Solve by releasing umem_mutex in dereg_mr() after umr_revoke_mr()
and before acquiring rb_lock. This ensures that we don't hold
umem_mutex while performing memory allocations that could trigger
the reclaim path.

This change prevents the deadlock by ensuring proper lock ordering and
avoiding holding locks during memory allocation operations that could
trigger the reclaim path.

The following lockdep warning demonstrates the deadlock:

 python3/20557 is trying to acquire lock:
 ffff888387542128 (&umem_odp->umem_mutex){+.+.}-{4:4}, at:
 mlx5_ib_invalidate_range+0x5b/0x550 [mlx5_ib]

 but task is already holding lock:
 ffffffff82f6b840 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}, at:
 unmap_vmas+0x7b/0x1a0

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
       fs_reclaim_acquire+0x60/0xd0
       mem_cgroup_css_alloc+0x6f/0x9b0
       cgroup_init_subsys+0xa4/0x240
       cgroup_init+0x1c8/0x510
       start_kernel+0x747/0x760
       x86_64_start_reservations+0x25/0x30
       x86_64_start_kernel+0x73/0x80
       common_startup_64+0x129/0x138

 -> #2 (fs_reclaim){+.+.}-{0:0}:
       fs_reclaim_acquire+0x91/0xd0
       __kmalloc_cache_noprof+0x4d/0x4c0
       mlx5r_cache_create_ent_locked+0x75/0x620 [mlx5_ib]
       mlx5_mkey_cache_init+0x186/0x360 [mlx5_ib]
       mlx5_ib_stage_post_ib_reg_umr_init+0x3c/0x60 [mlx5_ib]
       __mlx5_ib_add+0x4b/0x190 [mlx5_ib]
       mlx5r_probe+0xd9/0x320 [mlx5_ib]
       auxiliary_bus_probe+0x42/0x70
       really_probe+0xdb/0x360
       __driver_probe_device+0x8f/0x130
       driver_probe_device+0x1f/0xb0
       __driver_attach+0xd4/0x1f0
       bus_for_each_dev+0x79/0xd0
       bus_add_driver+0xf0/0x200
       driver_register+0x6e/0xc0
       __auxiliary_driver_register+0x6a/0xc0
       do_one_initcall+0x5e/0x390
       do_init_module+0x88/0x240
       init_module_from_file+0x85/0xc0
       idempotent_init_module+0x104/0x300
       __x64_sys_finit_module+0x68/0xc0
       do_syscall_64+0x6d/0x140
       entry_SYSCALL_64_after_hwframe+0x4b/0x53

 -> #1 (&dev->cache.rb_lock){+.+.}-{4:4}:
       __mutex_lock+0x98/0xf10
       __mlx5_ib_dereg_mr+0x6f2/0x890 [mlx5_ib]
       mlx5_ib_dereg_mr+0x21/0x110 [mlx5_ib]
       ib_dereg_mr_user+0x85/0x1f0 [ib_core]
       uverbs_free_mr+0x19/0x30 [ib_uverbs]
       destroy_hw_idr_uobject+0x21/0x80 [ib_uverbs]
       uverbs_destroy_uobject+0x60/0x3d0 [ib_uverbs]
       uobj_destroy+0x57/0xa0 [ib_uverbs]
       ib_uverbs_cmd_verbs+0x4d5/0x1210 [ib_uverbs]
       ib_uverbs_ioctl+0x129/0x230 [ib_uverbs]
       __x64_sys_ioctl+0x596/0xaa0
       do_syscall_64+0x6d/0x140
       entry_SYSCALL_64_after_hwframe+0x4b/0x53

 -> #0 (&umem_odp->umem_mutex){+.+.}-{4:4}:
       __lock_acquire+0x1826/0x2f00
       lock_acquire+0xd3/0x2e0
       __mutex_lock+0x98/0xf10
       mlx5_ib_invalidate_range+0x5b/0x550 [mlx5_ib]
       __mmu_notifier_invalidate_range_start+0x18e/0x1f0
       unmap_vmas+0x182/0x1a0
       exit_mmap+0xf3/0x4a0
       mmput+0x3a/0x100
       do_exit+0x2b9/0xa90
       do_group_exit+0x32/0xa0
       get_signal+0xc32/0xcb0
       arch_do_signal_or_restart+0x29/0x1d0
       syscall_exit_to_user_mode+0x105/0x1d0
       do_syscall_64+0x79/0x140
       entry_SYSCALL_64_after_hwframe+0x4b/0x53

 Chain exists of:
 &dev->cache.rb_lock --> mmu_notifier_invalidate_range_start -->
 &umem_odp->umem_mutex

 Possible unsafe locking scenario:

       CPU0                        CPU1
       ----                        ----
   lock(&umem_odp->umem_mutex);
                                lock(mmu_notifier_invalidate_range_start);
                                lock(&umem_odp->umem_mutex);
   lock(&dev->cache.rb_lock);

 *** DEADLOCK ***

Fixes: abb604a ("RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error")
Signed-off-by: Or Har-Toov <ohartoov@nvidia.com>
Reviewed-by: Michael Guralnik <michaelgur@nvidia.com>
Link: https://patch.msgid.link/3c8f225a8a9fade647d19b014df1172544643e4a.1750061612.git.leon@kernel.org
Signed-off-by: Leon Romanovsky <leon@kernel.org>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
The WARN_ON_ONCE is introduced on truncate_folio_batch_exceptionals() to
capture whether the filesystem has removed all DAX entries or not.

And the fix has been applied on the filesystem xfs and ext4 by the commit
0e2f80a ("fs/dax: ensure all pages are idle prior to filesystem
unmount").

Apply the missed fix on filesystem fuse to fix the runtime warning:

[    2.011450] ------------[ cut here ]------------
[    2.011873] WARNING: CPU: 0 PID: 145 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0x272/0x2b0
[    2.012468] Modules linked in:
[    2.012718] CPU: 0 UID: 1000 PID: 145 Comm: weston Not tainted 6.16.0-rc2-WSL2-STABLE #2 PREEMPT(undef)
[    2.013292] RIP: 0010:truncate_folio_batch_exceptionals+0x272/0x2b0
[    2.013704] Code: 48 63 d0 41 29 c5 48 8d 1c d5 00 00 00 00 4e 8d 6c 2a 01 49 c1 e5 03 eb 09 48 83 c3 08 49 39 dd 74 83 41 f6 44 1c 08 01 74 ef <0f> 0b 49 8b 34 1e 48 89 ef e8 10 a2 17 00 eb df 48 8b 7d 00 e8 35
[    2.014845] RSP: 0018:ffffa47ec33f3b10 EFLAGS: 00010202
[    2.015279] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[    2.015884] RDX: 0000000000000000 RSI: ffffa47ec33f3ca0 RDI: ffff98aa44f3fa80
[    2.016377] RBP: ffff98aa44f3fbf0 R08: ffffa47ec33f3ba8 R09: 0000000000000000
[    2.016942] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa47ec33f3ca0
[    2.017437] R13: 0000000000000008 R14: ffffa47ec33f3ba8 R15: 0000000000000000
[    2.017972] FS:  000079ce006afa40(0000) GS:ffff98aade441000(0000) knlGS:0000000000000000
[    2.018510] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    2.018987] CR2: 000079ce03e74000 CR3: 000000010784f006 CR4: 0000000000372eb0
[    2.019518] Call Trace:
[    2.019729]  <TASK>
[    2.019901]  truncate_inode_pages_range+0xd8/0x400
[    2.020280]  ? timerqueue_add+0x66/0xb0
[    2.020574]  ? get_nohz_timer_target+0x2a/0x140
[    2.020904]  ? timerqueue_add+0x66/0xb0
[    2.021231]  ? timerqueue_del+0x2e/0x50
[    2.021646]  ? __remove_hrtimer+0x39/0x90
[    2.022017]  ? srso_alias_untrain_ret+0x1/0x10
[    2.022497]  ? psi_group_change+0x136/0x350
[    2.023046]  ? _raw_spin_unlock+0xe/0x30
[    2.023514]  ? finish_task_switch.isra.0+0x8d/0x280
[    2.024068]  ? __schedule+0x532/0xbd0
[    2.024551]  fuse_evict_inode+0x29/0x190
[    2.025131]  evict+0x100/0x270
[    2.025641]  ? _atomic_dec_and_lock+0x39/0x50
[    2.026316]  ? __pfx_generic_delete_inode+0x10/0x10
[    2.026843]  __dentry_kill+0x71/0x180
[    2.027335]  dput+0xeb/0x1b0
[    2.027725]  __fput+0x136/0x2b0
[    2.028054]  __x64_sys_close+0x3d/0x80
[    2.028469]  do_syscall_64+0x6d/0x1b0
[    2.028832]  ? clear_bhb_loop+0x30/0x80
[    2.029182]  ? clear_bhb_loop+0x30/0x80
[    2.029533]  ? clear_bhb_loop+0x30/0x80
[    2.029902]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
[    2.030423] RIP: 0033:0x79ce03d0d067
[    2.030820] Code: b8 ff ff ff ff e9 3e ff ff ff 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 c3 a7 f8 ff
[    2.032354] RSP: 002b:00007ffef0498948 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
[    2.032939] RAX: ffffffffffffffda RBX: 00007ffef0498960 RCX: 000079ce03d0d067
[    2.033612] RDX: 0000000000000003 RSI: 0000000000001000 RDI: 000000000000000d
[    2.034289] RBP: 00007ffef0498a30 R08: 000000000000000d R09: 0000000000000000
[    2.034944] R10: 00007ffef0498978 R11: 0000000000000246 R12: 0000000000000001
[    2.035610] R13: 00007ffef0498960 R14: 000079ce03e09ce0 R15: 0000000000000003
[    2.036301]  </TASK>
[    2.036532] ---[ end trace 0000000000000000 ]---

Link: https://lkml.kernel.org/r/20250621171507.3770-1-haiyuewa@163.com
Fixes: bde708f ("fs/dax: always remove DAX page-cache entries when breaking layouts")
Signed-off-by: Haiyue Wang <haiyuewa@163.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
Fix cifs_signal_cifsd_for_reconnect() to take the correct lock order
and prevent the following deadlock from happening

======================================================
WARNING: possible circular locking dependency detected
6.16.0-rc3-build2+ torvalds#1301 Tainted: G S      W
------------------------------------------------------
cifsd/6055 is trying to acquire lock:
ffff88810ad56038 (&tcp_ses->srv_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x134/0x200

but task is already holding lock:
ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (&ret_buf->chan_lock){+.+.}-{3:3}:
       validate_chain+0x1cf/0x270
       __lock_acquire+0x60e/0x780
       lock_acquire.part.0+0xb4/0x1f0
       _raw_spin_lock+0x2f/0x40
       cifs_setup_session+0x81/0x4b0
       cifs_get_smb_ses+0x771/0x900
       cifs_mount_get_session+0x7e/0x170
       cifs_mount+0x92/0x2d0
       cifs_smb3_do_mount+0x161/0x460
       smb3_get_tree+0x55/0x90
       vfs_get_tree+0x46/0x180
       do_new_mount+0x1b0/0x2e0
       path_mount+0x6ee/0x740
       do_mount+0x98/0xe0
       __do_sys_mount+0x148/0x180
       do_syscall_64+0xa4/0x260
       entry_SYSCALL_64_after_hwframe+0x76/0x7e

-> #1 (&ret_buf->ses_lock){+.+.}-{3:3}:
       validate_chain+0x1cf/0x270
       __lock_acquire+0x60e/0x780
       lock_acquire.part.0+0xb4/0x1f0
       _raw_spin_lock+0x2f/0x40
       cifs_match_super+0x101/0x320
       sget+0xab/0x270
       cifs_smb3_do_mount+0x1e0/0x460
       smb3_get_tree+0x55/0x90
       vfs_get_tree+0x46/0x180
       do_new_mount+0x1b0/0x2e0
       path_mount+0x6ee/0x740
       do_mount+0x98/0xe0
       __do_sys_mount+0x148/0x180
       do_syscall_64+0xa4/0x260
       entry_SYSCALL_64_after_hwframe+0x76/0x7e

-> #0 (&tcp_ses->srv_lock){+.+.}-{3:3}:
       check_noncircular+0x95/0xc0
       check_prev_add+0x115/0x2f0
       validate_chain+0x1cf/0x270
       __lock_acquire+0x60e/0x780
       lock_acquire.part.0+0xb4/0x1f0
       _raw_spin_lock+0x2f/0x40
       cifs_signal_cifsd_for_reconnect+0x134/0x200
       __cifs_reconnect+0x8f/0x500
       cifs_handle_standard+0x112/0x280
       cifs_demultiplex_thread+0x64d/0xbc0
       kthread+0x2f7/0x310
       ret_from_fork+0x2a/0x230
       ret_from_fork_asm+0x1a/0x30

other info that might help us debug this:

Chain exists of:
  &tcp_ses->srv_lock --> &ret_buf->ses_lock --> &ret_buf->chan_lock

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&ret_buf->chan_lock);
                               lock(&ret_buf->ses_lock);
                               lock(&ret_buf->chan_lock);
  lock(&tcp_ses->srv_lock);

 *** DEADLOCK ***

3 locks held by cifsd/6055:
 #0: ffffffff857de398 (&cifs_tcp_ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x7b/0x200
 #1: ffff888119c64060 (&ret_buf->ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x9c/0x200
 #2: ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200

Cc: linux-cifs@vger.kernel.org
Reported-by: David Howells <dhowells@redhat.com>
Fixes: d7d7a66 ("cifs: avoid use of global locks for high contention data")
Reviewed-by: David Howells <dhowells@redhat.com>
Tested-by: David Howells <dhowells@redhat.com>
Signed-off-by: Paulo Alcantara (Red Hat) <pc@manguebit.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
When I run the NVME over TCP test in virtme-ng, I get the following
"suspicious RCU usage" warning in nvme_mpath_add_sysfs_link():

'''
[    5.024557][   T44] nvmet: Created nvm controller 1 for subsystem nqn.2025-06.org.nvmexpress.mptcp for NQN nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77.
[    5.027401][  T183] nvme nvme0: creating 2 I/O queues.
[    5.029017][  T183] nvme nvme0: mapped 2/0/0 default/read/poll queues.
[    5.032587][  T183] nvme nvme0: new ctrl: NQN "nqn.2025-06.org.nvmexpress.mptcp", addr 127.0.0.1:4420, hostnqn: nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77
[    5.042214][   T25]
[    5.042440][   T25] =============================
[    5.042579][   T25] WARNING: suspicious RCU usage
[    5.042705][   T25] 6.16.0-rc3+ torvalds#23 Not tainted
[    5.042812][   T25] -----------------------------
[    5.042934][   T25] drivers/nvme/host/multipath.c:1203 RCU-list traversed in non-reader section!!
[    5.043111][   T25]
[    5.043111][   T25] other info that might help us debug this:
[    5.043111][   T25]
[    5.043341][   T25]
[    5.043341][   T25] rcu_scheduler_active = 2, debug_locks = 1
[    5.043502][   T25] 3 locks held by kworker/u9:0/25:
[    5.043615][   T25]  #0: ffff888008730948 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x7ed/0x1350
[    5.043830][   T25]  #1: ffffc900001afd40 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0xcf3/0x1350
[    5.044084][   T25]  #2: ffff888013ee0020 (&head->srcu){.+.+}-{0:0}, at: nvme_mpath_add_sysfs_link.part.0+0xb4/0x3a0
[    5.044300][   T25]
[    5.044300][   T25] stack backtrace:
[    5.044439][   T25] CPU: 0 UID: 0 PID: 25 Comm: kworker/u9:0 Not tainted 6.16.0-rc3+ torvalds#23 PREEMPT(full)
[    5.044441][   T25] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[    5.044442][   T25] Workqueue: async async_run_entry_fn
[    5.044445][   T25] Call Trace:
[    5.044446][   T25]  <TASK>
[    5.044449][   T25]  dump_stack_lvl+0x6f/0xb0
[    5.044453][   T25]  lockdep_rcu_suspicious.cold+0x4f/0xb1
[    5.044457][   T25]  nvme_mpath_add_sysfs_link.part.0+0x2fb/0x3a0
[    5.044459][   T25]  ? queue_work_on+0x90/0xf0
[    5.044461][   T25]  ? lockdep_hardirqs_on+0x78/0x110
[    5.044466][   T25]  nvme_mpath_set_live+0x1e9/0x4f0
[    5.044470][   T25]  nvme_mpath_add_disk+0x240/0x2f0
[    5.044472][   T25]  ? __pfx_nvme_mpath_add_disk+0x10/0x10
[    5.044475][   T25]  ? add_disk_fwnode+0x361/0x580
[    5.044480][   T25]  nvme_alloc_ns+0x81c/0x17c0
[    5.044483][   T25]  ? kasan_quarantine_put+0x104/0x240
[    5.044487][   T25]  ? __pfx_nvme_alloc_ns+0x10/0x10
[    5.044495][   T25]  ? __pfx_nvme_find_get_ns+0x10/0x10
[    5.044496][   T25]  ? rcu_read_lock_any_held+0x45/0xa0
[    5.044498][   T25]  ? validate_chain+0x232/0x4f0
[    5.044503][   T25]  nvme_scan_ns+0x4c8/0x810
[    5.044506][   T25]  ? __pfx_nvme_scan_ns+0x10/0x10
[    5.044508][   T25]  ? find_held_lock+0x2b/0x80
[    5.044512][   T25]  ? ktime_get+0x16d/0x220
[    5.044517][   T25]  ? kvm_clock_get_cycles+0x18/0x30
[    5.044520][   T25]  ? __pfx_nvme_scan_ns_async+0x10/0x10
[    5.044522][   T25]  async_run_entry_fn+0x97/0x560
[    5.044523][   T25]  ? rcu_is_watching+0x12/0xc0
[    5.044526][   T25]  process_one_work+0xd3c/0x1350
[    5.044532][   T25]  ? __pfx_process_one_work+0x10/0x10
[    5.044536][   T25]  ? assign_work+0x16c/0x240
[    5.044539][   T25]  worker_thread+0x4da/0xd50
[    5.044545][   T25]  ? __pfx_worker_thread+0x10/0x10
[    5.044546][   T25]  kthread+0x356/0x5c0
[    5.044548][   T25]  ? __pfx_kthread+0x10/0x10
[    5.044549][   T25]  ? ret_from_fork+0x1b/0x2e0
[    5.044552][   T25]  ? __lock_release.isra.0+0x5d/0x180
[    5.044553][   T25]  ? ret_from_fork+0x1b/0x2e0
[    5.044555][   T25]  ? rcu_is_watching+0x12/0xc0
[    5.044557][   T25]  ? __pfx_kthread+0x10/0x10
[    5.044559][   T25]  ret_from_fork+0x218/0x2e0
[    5.044561][   T25]  ? __pfx_kthread+0x10/0x10
[    5.044562][   T25]  ret_from_fork_asm+0x1a/0x30
[    5.044570][   T25]  </TASK>
'''

This patch uses sleepable RCU version of helper list_for_each_entry_srcu()
instead of list_for_each_entry_rcu() to fix it.

Fixes: 4dbd2b2 ("nvme-multipath: Add visibility for round-robin io-policy")
Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn>
Reviewed-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Nilay Shroff <nilay@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
inochisa pushed a commit that referenced this pull request Jul 13, 2025
With VIRTCHNL2_CAP_MACFILTER enabled, the following warning is generated
on module load:

[  324.701677] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:578
[  324.701684] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1582, name: NetworkManager
[  324.701689] preempt_count: 201, expected: 0
[  324.701693] RCU nest depth: 0, expected: 0
[  324.701697] 2 locks held by NetworkManager/1582:
[  324.701702]  #0: ffffffff9f7be770 (rtnl_mutex){....}-{3:3}, at: rtnl_newlink+0x791/0x21e0
[  324.701730]  #1: ff1100216c380368 (_xmit_ETHER){....}-{2:2}, at: __dev_open+0x3f0/0x870
[  324.701749] Preemption disabled at:
[  324.701752] [<ffffffff9cd23b9d>] __dev_open+0x3dd/0x870
[  324.701765] CPU: 30 UID: 0 PID: 1582 Comm: NetworkManager Not tainted 6.15.0-rc5+ #2 PREEMPT(voluntary)
[  324.701771] Hardware name: Intel Corporation M50FCP2SBSTD/M50FCP2SBSTD, BIOS SE5C741.86B.01.01.0001.2211140926 11/14/2022
[  324.701774] Call Trace:
[  324.701777]  <TASK>
[  324.701779]  dump_stack_lvl+0x5d/0x80
[  324.701788]  ? __dev_open+0x3dd/0x870
[  324.701793]  __might_resched.cold+0x1ef/0x23d
<..>
[  324.701818]  __mutex_lock+0x113/0x1b80
<..>
[  324.701917]  idpf_ctlq_clean_sq+0xad/0x4b0 [idpf]
[  324.701935]  ? kasan_save_track+0x14/0x30
[  324.701941]  idpf_mb_clean+0x143/0x380 [idpf]
<..>
[  324.701991]  idpf_send_mb_msg+0x111/0x720 [idpf]
[  324.702009]  idpf_vc_xn_exec+0x4cc/0x990 [idpf]
[  324.702021]  ? rcu_is_watching+0x12/0xc0
[  324.702035]  idpf_add_del_mac_filters+0x3ed/0xb50 [idpf]
<..>
[  324.702122]  __hw_addr_sync_dev+0x1cf/0x300
[  324.702126]  ? find_held_lock+0x32/0x90
[  324.702134]  idpf_set_rx_mode+0x317/0x390 [idpf]
[  324.702152]  __dev_open+0x3f8/0x870
[  324.702159]  ? __pfx___dev_open+0x10/0x10
[  324.702174]  __dev_change_flags+0x443/0x650
<..>
[  324.702208]  netif_change_flags+0x80/0x160
[  324.702218]  do_setlink.isra.0+0x16a0/0x3960
<..>
[  324.702349]  rtnl_newlink+0x12fd/0x21e0

The sequence is as follows:
	rtnl_newlink()->
	__dev_change_flags()->
	__dev_open()->
	dev_set_rx_mode() - >  # disables BH and grabs "dev->addr_list_lock"
	idpf_set_rx_mode() ->  # proceed only if VIRTCHNL2_CAP_MACFILTER is ON
	__dev_uc_sync() ->
	idpf_add_mac_filter ->
	idpf_add_del_mac_filters ->
	idpf_send_mb_msg() ->
	idpf_mb_clean() ->
	idpf_ctlq_clean_sq()   # mutex_lock(cq_lock)

Fix by converting cq_lock to a spinlock. All operations under the new
lock are safe except freeing the DMA memory, which may use vunmap(). Fix
by requesting a contiguous physical memory for the DMA mapping.

Fixes: a251eee ("idpf: add SRIOV support and other ndo_ops")
Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com>
Signed-off-by: Ahmed Zaki <ahmed.zaki@intel.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Tested-by: Samuel Salin <Samuel.salin@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
inochisa pushed a commit that referenced this pull request Sep 1, 2025
…git/rostedt/linux-ktest

Pull ktest updates from Steven Rostedt:

 - Add new -D option that allows to override variables and options

   For example:

     ./ktest.pl -DPATCH_START:=HEAD~1 -DOUTPUT_DIR=/work/build/urgent config

   The above sets the variable "PATCH_START" to HEAD~1 and the
   OUTPUT_DIR option to "/work/build/urgent".

   This is useful because currently the only way to make a slight change
   to a config file is by modifying that config file. For one time
   changes, this can be annoying. Having a way to do a one time override
   from the command line simplifies the workflow.

   Temp variables (PATCH_START) will override every temp variable in the
   config file, whereas options will act like a normal OVERRIDE option
   and will only affect the session they define.

      -DBUILD_OUTPUT=/work/git/linux.git

   Replaces the default BUILD_OUTPUT option.

      '-DBUILD_OUTPUT[2]=/work/git/linux.git'

   Only replaces the BUILD_OUTPUT variable for test #2.

 - If an option contains itself, just drop it instead of going into an
   infinite loop and failing to parse (it doesn't crash, it detects the
   recursion after 100 iterations anyway).

   Some configs may define a variable with the same name as the option:

      ADD_CONFIG := $(ADD_CONFIG)

   But if the option doesn't exist, it the above will fail to parse. In
   these cases, just ignore evaluating the option inside the definition
   of another option if it has the same name.

 - Display the BUILD_DIR and OUTPUT_DIR options at the start of every
   test

   It is useful to know which kernel source and what destination a test
   is using when it starts, in case a mistake is made. This makes it
   easier to abort the test if the wrong source or destination is being
   used instead of waiting until the test completes.

 - Add new PATCHCHECK_SKIP option

   When testing a series of commits that also includes changes to the
   Linux tools directory, it is useless to test the changes in tools as
   they may not affect the kernel itself. Doing tests on the kernel for
   changes that do not affect the kernel is a waste of time.

   Add a PATCHCHECK_SKIP that takes a series of shas that will be
   skipped while doing the individual commit tests.

* tag 'ktest-v6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-ktest:
  ktest.pl: Add new PATCHCHECK_SKIP option to skip testing individual commits
  ktest.pl: Always display BUILD_DIR and OUTPUT_DIR at the start of tests
  ktest.pl: Prevent recursion of default variable options
  ktest.pl: Have -D option work without a space
  ktest.pl: Allow command option -D to override temp variables
  ktest.pl: Add -D option to override options
unicornx pushed a commit that referenced this pull request Nov 19, 2025
Write combining is an optimization feature in CPUs that is frequently
used by modern devices to generate 32 or 64 byte TLPs at the PCIe level.
These large TLPs allow certain optimizations in the driver to HW
communication that improve performance. As WC is unpredictable and
optional the HW designs all tolerate cases where combining doesn't
happen and simply experience a performance degradation.

Unfortunately many virtualization environments on all architectures have
done things that completely disable WC inside the VM with no generic way
to detect this. For example WC was fully blocked in ARM64 KVM until
commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for
vfio pci device").

Trying to use WC when it is known not to work has a measurable
performance cost (~5%). Long ago mlx5 developed an boot time algorithm
to test if WC is available or not by using unique mlx5 HW features to
measure how many large TLPs the device is receiving. The SW generates a
large number of combining opportunities and if any succeed then WC is
declared working.

In mlx5 the WC optimization feature is never used by the kernel except
for the boot time test. The WC is only used by userspace in rdma-core.

Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining
implementation that is very unreliable compared to pretty much
everything prior. This is being fixed architecturally in new CPUs with a
new ST64B instruction, but current shipping devices suffer this problem.

Unreliable means the SW can present thousands of combining opportunities
and the HW will not combine for any of them, which creates a performance
degradation, and critically fails the mlx5 boot test. However, the CPU
is very sensitive to the instruction sequence used, with the better
options being sufficiently good that the performance loss from the
unreliable CPU is not measurable.

Broadly there are several options, from worst to best:
1) A C loop doing a u64 memcpy.
   This was used prior to commit ef30228
   ("IB/mlx5: Use __iowrite64_copy() for write combining stores")
   and failed almost all the time on Grace CPUs.

2) ARM64 assembly with consecutive 8 byte stores. This was implemented
   as an arch-generic __iowriteXX_copy() family of functions suitable
   for performance use in drivers for WC. commit ead7911
   ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the
   ARM implementation.

3) ARM64 assembly with consecutive 16 byte stores. This was rejected
   from kernel use over fears of virtualization failures. Common ARM
   VMMs will crash if STP is used against emulated memory.

4) A single NEON store instruction. Userspace has used this option for a
   very long time, it performs well.

5) For future silicon the new ST64B instruction is guaranteed to
   generate a 64 byte TLP 100% of the time

The past upgrade from #1 to #2 was thought to be sufficient to solve
this problem. However, more testing on more systems shows that #3 is
still problematic at a low frequency and the kernel test fails.

Thus, make the mlx5 use the same instructions as userspace during the
boot time WC self test. This way the WC test matches the userspace and
will properly detect the ability of HW to support the WC workload that
userspace will generate. While #4 still has imperfect combining
performance, it is substantially better than #2, and does actually give
a performance win to applications. Self-test failures with #2 are like
3/10 boots, on some systems, #4 has never seen a boot failure.

There is no real general use case for a NEON based WC flow in the
kernel. This is not suitable for any performance path work as getting
into/out of a NEON context is fairly expensive compared to the gain of
WC. Future CPUs are going to fix this issue by using an new ARM
instruction and __iowriteXX_copy() will be updated to use that
automatically, probably using the ALTERNATES mechanism.

Since this problem is constrained to mlx5's unique situation of needing
a non-performance code path to duplicate what mlx5 userspace is doing as
a matter of self-testing, implement it as a one line inline assembly in
the driver directly.

Lastly, this was concluded from the discussion with ARM maintainers
which confirms that this is the best approach for the solution:
https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com

Signed-off-by: Patrisious Haddad <phaddad@nvidia.com>
Reviewed-by: Michael Guralnik <michaelgur@nvidia.com>
Reviewed-by: Moshe Shemesh <moshe@nvidia.com>
Signed-off-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://patch.msgid.link/1759093688-841357-1-git-send-email-tariqt@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
unicornx pushed a commit that referenced this pull request Jan 21, 2026
Testing in two circumstances:

1. back to back optical SFP+ connection between two LS1028A-QDS ports
   with the SCH-26908 riser card
2. T1042 with on-board AQR115 PHY using "OCSGMII", as per
   https://lore.kernel.org/lkml/aIuEvaSCIQdJWcZx@FUE-ALEWI-WINX/

strongly suggests that enabling in-band auto-negotiation is actually
possible when the lane baud rate is 3.125 Gbps.

It was previously thought that this would not be the case, because it
was only tested on 2500base-x links with on-board Aquantia PHYs, where
it was noticed that MII_LPA is always reported as zero, and it was
thought that this is because of the PCS.

Test case #1 above shows it is not, and the configured MII_ADVERTISE on
system A ends up in the MII_LPA on system B, when in 2500base-x mode
(IF_MODE=0).

Test case #2, which uses "SGMII" auto-negotiation (IF_MODE=3) for the
3.125 Gbps lane, is actually a misconfiguration, but it is what led to
the discovery.

There is actually an old bug in the Lynx PCS driver - it expects all
register values to contain their default out-of-reset values, as if the
PCS were initialized by the Reset Configuration Word (RCW) settings.
There are 2 cases in which this is problematic:
- if the bootloader (or previous kexec-enabled Linux) wrote a different
  IF_MODE value
- if dynamically changing the SerDes protocol from 1000base-x to
  2500base-x, e.g. by replacing the optical SFP module.

Specifically in test case #2, an accidental alignment between the
bootloader configuring the PCS to expect SGMII in-band code words, and
the AQR115 PHY actually transmitting SGMII in-band code words when
operating in the "OCSGMII" system interface protocol, led to the PCS
transmitting replicated symbols at 3.125 Gbps baud rate. This could only
have happened if the PCS saw and reacted to the SGMII code words in the
first place.

Since test #2 is invalid from a protocol perspective (there seems to be
no standard way of negotiating the data rate of 2500 Mbps with SGMII,
and the lower data rates should remain 10/100/1000), in-band auto-negotiation
for 2500base-x effectively means Clause 37 (i.e. IF_MODE=0).

Make 2500base-x be treated like 1000base-x in this regard, by removing
all prior limitations and calling lynx_pcs_config_giga().

This adds a new feature: LINK_INBAND_ENABLE and at the same time fixes
the Lynx PCS's long standing problem that the registers (specifically
IF_MODE, but others could be misconfigured as well) are not written by
the driver to the known valid values for 2500base-x.

Co-developed-by: Alexander Wilhelm <alexander.wilhelm@westermo.com>
Signed-off-by: Alexander Wilhelm <alexander.wilhelm@westermo.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20251125103507.749654-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
unicornx pushed a commit that referenced this pull request Jan 21, 2026
As Jiaming Zhang and syzbot reported, there is potential deadlock in
f2fs as below:

Chain exists of:
  &sbi->cp_rwsem --> fs_reclaim --> sb_internal#2

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  rlock(sb_internal#2);
                               lock(fs_reclaim);
                               lock(sb_internal#2);
  rlock(&sbi->cp_rwsem);

 *** DEADLOCK ***

3 locks held by kswapd0/73:
 #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:7015 [inline]
 #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x951/0x2800 mm/vmscan.c:7389
 #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_trylock_shared fs/super.c:562 [inline]
 #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_cache_scan+0x91/0x4b0 fs/super.c:197
 #2: ffff888011840610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x8d9/0x1b60 fs/f2fs/inode.c:890

stack backtrace:
CPU: 0 UID: 0 PID: 73 Comm: kswapd0 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_circular_bug+0x2ee/0x310 kernel/locking/lockdep.c:2043
 check_noncircular+0x134/0x160 kernel/locking/lockdep.c:2175
 check_prev_add kernel/locking/lockdep.c:3165 [inline]
 check_prevs_add kernel/locking/lockdep.c:3284 [inline]
 validate_chain+0xb9b/0x2140 kernel/locking/lockdep.c:3908
 __lock_acquire+0xab9/0xd20 kernel/locking/lockdep.c:5237
 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868
 down_read+0x46/0x2e0 kernel/locking/rwsem.c:1537
 f2fs_down_read fs/f2fs/f2fs.h:2278 [inline]
 f2fs_lock_op fs/f2fs/f2fs.h:2357 [inline]
 f2fs_do_truncate_blocks+0x21c/0x10c0 fs/f2fs/file.c:791
 f2fs_truncate_blocks+0x10a/0x300 fs/f2fs/file.c:867
 f2fs_truncate+0x489/0x7c0 fs/f2fs/file.c:925
 f2fs_evict_inode+0x9f2/0x1b60 fs/f2fs/inode.c:897
 evict+0x504/0x9c0 fs/inode.c:810
 f2fs_evict_inode+0x1dc/0x1b60 fs/f2fs/inode.c:853
 evict+0x504/0x9c0 fs/inode.c:810
 dispose_list fs/inode.c:852 [inline]
 prune_icache_sb+0x21b/0x2c0 fs/inode.c:1000
 super_cache_scan+0x39b/0x4b0 fs/super.c:224
 do_shrink_slab+0x6ef/0x1110 mm/shrinker.c:437
 shrink_slab_memcg mm/shrinker.c:550 [inline]
 shrink_slab+0x7ef/0x10d0 mm/shrinker.c:628
 shrink_one+0x28a/0x7c0 mm/vmscan.c:4955
 shrink_many mm/vmscan.c:5016 [inline]
 lru_gen_shrink_node mm/vmscan.c:5094 [inline]
 shrink_node+0x315d/0x3780 mm/vmscan.c:6081
 kswapd_shrink_node mm/vmscan.c:6941 [inline]
 balance_pgdat mm/vmscan.c:7124 [inline]
 kswapd+0x147c/0x2800 mm/vmscan.c:7389
 kthread+0x70e/0x8a0 kernel/kthread.c:463
 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158
 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
 </TASK>

The root cause is deadlock among four locks as below:

kswapd
- fs_reclaim				--- Lock A
 - shrink_one
  - evict
   - f2fs_evict_inode
    - sb_start_intwrite			--- Lock B

- iput
 - evict
  - f2fs_evict_inode
   - sb_start_intwrite			--- Lock B
   - f2fs_truncate
    - f2fs_truncate_blocks
     - f2fs_do_truncate_blocks
      - f2fs_lock_op			--- Lock C

ioctl
- f2fs_ioc_commit_atomic_write
 - f2fs_lock_op				--- Lock C
  - __f2fs_commit_atomic_write
   - __replace_atomic_write_block
    - f2fs_get_dnode_of_data
     - __get_node_folio
      - f2fs_check_nid_range
       - f2fs_handle_error
        - f2fs_record_errors
         - f2fs_down_write		--- Lock D

open
- do_open
 - do_truncate
  - security_inode_need_killpriv
   - f2fs_getxattr
    - lookup_all_xattrs
     - f2fs_handle_error
      - f2fs_record_errors
       - f2fs_down_write		--- Lock D
        - f2fs_commit_super
         - read_mapping_folio
          - filemap_alloc_folio_noprof
           - prepare_alloc_pages
            - fs_reclaim_acquire	--- Lock A

In order to avoid such deadlock, we need to avoid grabbing sb_lock in
f2fs_handle_error(), so, let's use asynchronous method instead:
- remove f2fs_handle_error() implementation
- rename f2fs_handle_error_async() to f2fs_handle_error()
- spread f2fs_handle_error()

Fixes: 95fa90c ("f2fs: support recording errors into superblock")
Cc: stable@kernel.org
Reported-by: syzbot+14b90e1156b9f6fc1266@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-f2fs-devel/68eae49b.050a0220.ac43.0001.GAE@google.com
Reported-by: Jiaming Zhang <r772577952@gmail.com>
Closes: https://lore.kernel.org/lkml/CANypQFa-Gy9sD-N35o3PC+FystOWkNuN8pv6S75HLT0ga-Tzgw@mail.gmail.com
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
unicornx pushed a commit that referenced this pull request Jan 21, 2026
When interrupting perf stat in repeat mode with a signal the signal is
passed to the child process but the repeat doesn't terminate:
```
$ perf stat -v --null --repeat 10 sleep 1
Control descriptor is not initialized
[ perf stat: executing run #1 ... ]
[ perf stat: executing run #2 ... ]
^Csleep: Interrupt
[ perf stat: executing run #3 ... ]
[ perf stat: executing run #4 ... ]
[ perf stat: executing run #5 ... ]
[ perf stat: executing run #6 ... ]
[ perf stat: executing run #7 ... ]
[ perf stat: executing run #8 ... ]
[ perf stat: executing run #9 ... ]
[ perf stat: executing run #10 ... ]

 Performance counter stats for 'sleep 1' (10 runs):

            0.9500 +- 0.0512 seconds time elapsed  ( +-  5.39% )

0.01user 0.02system 0:09.53elapsed 0%CPU (0avgtext+0avgdata 18940maxresident)k
29944inputs+0outputs (0major+2629minor)pagefaults 0swaps
```

Terminate the repeated run and give a reasonable exit value:
```
$ perf stat -v --null --repeat 10 sleep 1
Control descriptor is not initialized
[ perf stat: executing run #1 ... ]
[ perf stat: executing run #2 ... ]
[ perf stat: executing run #3 ... ]
^Csleep: Interrupt

 Performance counter stats for 'sleep 1' (10 runs):

             0.680 +- 0.321 seconds time elapsed  ( +- 47.16% )

Command exited with non-zero status 130
0.00user 0.01system 0:02.05elapsed 0%CPU (0avgtext+0avgdata 70688maxresident)k
0inputs+0outputs (0major+5002minor)pagefaults 0swaps
```

Note, this also changes the exit value for non-repeat runs when
interrupted by a signal.

Reported-by: Ingo Molnar <mingo@kernel.org>
Closes: https://lore.kernel.org/lkml/aS5wjmbAM9ka3M2g@gmail.com/
Signed-off-by: Ian Rogers <irogers@google.com>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.