Skip to content

Commit

Permalink
fixed typo
Browse files Browse the repository at this point in the history
  • Loading branch information
rm-wu committed Jan 24, 2021
1 parent e01dd3d commit 2233593
Show file tree
Hide file tree
Showing 11 changed files with 1,722 additions and 1 deletion.
Empty file added LSTA_flow/FlowLayer.py
Empty file.
155 changes: 155 additions & 0 deletions LSTA_flow/MyConvLSTACell.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import torch
import torch.nn as nn
import torch.nn.functional as F


class MyConvLSTACell(nn.Module):
def __init__(self, input_size, memory_size, c_cam_classes=100, kernel_size=3,
stride=1, padding=1, zero_init=False):
super(MyConvLSTACell, self).__init__()
self.input_size = input_size
self.memory_size = memory_size
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.c_classifier = nn.Linear(memory_size, c_cam_classes, bias=False)
self.coupling_fc = nn.Linear(memory_size, c_cam_classes, bias=False)
self.avgpool = nn.AvgPool2d(7)

# Attention params

self.conv_i_s = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_i_cam = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)

self.conv_f_s = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_f_cam = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)

self.conv_a_s = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_a_cam = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)

self.conv_o_s = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_o_cam = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)

if zero_init:
torch.nn.init.constant_(self.conv_i_s.weight, 0)
torch.nn.init.constant_(self.conv_i_s.bias, 0)
torch.nn.init.constant_(self.conv_i_cam.weight, 0)

torch.nn.init.constant_(self.conv_f_s.weight, 0)
torch.nn.init.constant_(self.conv_f_s.bias, 0)
torch.nn.init.constant_(self.conv_f_cam.weight, 0)

torch.nn.init.constant_(self.conv_a_s.weight, 0)
torch.nn.init.constant_(self.conv_a_s.bias, 0)

torch.nn.init.constant_(self.conv_o_s.weight, 0)
torch.nn.init.constant_(self.conv_o_s.bias, 0)
torch.nn.init.constant_(self.conv_o_cam.weight, 0)
else:
torch.nn.init.xavier_normal_(self.conv_i_s.weight)
torch.nn.init.constant_(self.conv_i_s.bias, 0)
torch.nn.init.xavier_normal_(self.conv_i_cam.weight)

torch.nn.init.xavier_normal_(self.conv_f_s.weight)
torch.nn.init.constant_(self.conv_f_s.bias, 0)
torch.nn.init.xavier_normal_(self.conv_f_cam.weight)

torch.nn.init.xavier_normal_(self.conv_a_s.weight)
torch.nn.init.constant_(self.conv_a_s.bias, 0)
torch.nn.init.xavier_normal_(self.conv_a_cam.weight)

torch.nn.init.xavier_normal_(self.conv_o_s.weight)
torch.nn.init.constant_(self.conv_o_s.bias, 0)
torch.nn.init.xavier_normal_(self.conv_o_cam.weight)

# Memory params

self.conv_i_x = nn.Conv2d(input_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_i_c = nn.Conv2d(memory_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding,
bias=False)

self.conv_f_x = nn.Conv2d(input_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_f_c = nn.Conv2d(memory_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding,
bias=False)

self.conv_c_x = nn.Conv2d(input_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_c_c = nn.Conv2d(memory_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding,
bias=False)

self.conv_o_x = nn.Conv2d(input_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.conv_o_c = nn.Conv2d(memory_size, memory_size, kernel_size=kernel_size, stride=stride, padding=padding,
bias=False)

if zero_init:
torch.nn.init.constant_(self.conv_i_x.weight, 0)
torch.nn.init.constant_(self.conv_i_x.bias, 0)
torch.nn.init.constant_(self.conv_i_c.weight, 0)

torch.nn.init.constant_(self.conv_f_x.weight, 0)
torch.nn.init.constant_(self.conv_f_x.bias, 0)
torch.nn.init.constant_(self.conv_f_c.weight, 0)

torch.nn.init.constant_(self.conv_c_x.weight, 0)
torch.nn.init.constant_(self.conv_c_x.bias, 0)
torch.nn.init.constant_(self.conv_c_c.weight, 0)

torch.nn.init.constant_(self.conv_o_x.weight, 0)
torch.nn.init.constant_(self.conv_o_x.bias, 0)
torch.nn.init.constant_(self.conv_o_c.weight, 0)
else:
torch.nn.init.xavier_normal_(self.conv_i_x.weight)
torch.nn.init.constant_(self.conv_i_x.bias, 0)
torch.nn.init.xavier_normal_(self.conv_i_c.weight)

torch.nn.init.xavier_normal_(self.conv_f_x.weight)
torch.nn.init.constant_(self.conv_f_x.bias, 0)
torch.nn.init.xavier_normal_(self.conv_f_c.weight)

torch.nn.init.xavier_normal_(self.conv_c_x.weight)
torch.nn.init.constant_(self.conv_c_x.bias, 0)
torch.nn.init.xavier_normal_(self.conv_c_c.weight)

torch.nn.init.xavier_normal_(self.conv_o_x.weight)
torch.nn.init.constant_(self.conv_o_x.bias, 0)
torch.nn.init.xavier_normal_(self.conv_o_c.weight)

def forward(self, x, cam, state_att, state_inp, x_flow_i=0, x_flow_f=0, x_flow_c=0, x_flow_o=0):
# state_att = [a, s]
# state_inp = [atanh(c), o]

a_t_1 = state_att[0]
s_t_1 = state_att[1]

c_t_1 = torch.tanh(state_inp[0])
o_t_1 = state_inp[1]

# Attention recurrence

i_s = torch.sigmoid(self.conv_i_s(s_t_1) + self.conv_i_cam(cam))
f_s = torch.sigmoid(self.conv_f_s(s_t_1) + self.conv_f_cam(cam))
o_s = torch.sigmoid(self.conv_o_s(s_t_1) + self.conv_o_cam(cam))
a_tilde = torch.tanh(self.conv_a_s(s_t_1) + self.conv_a_cam(cam))
a = (f_s * a_t_1) + (i_s * a_tilde)
s = o_s * torch.tanh(a)
u = s + cam # hidden state + cam

u = F.softmax(u.view(u.size(0), -1), 1)
u = u.view(u.size(0), 1, 7, 7)

x_att = x * u.expand_as(x)

i_x = torch.sigmoid(self.conv_i_c(o_t_1 * c_t_1) + self.conv_i_x(x_att) + x_flow_i)
f_x = torch.sigmoid(self.conv_f_c(o_t_1 * c_t_1) + self.conv_f_x(x_att) + x_flow_f)
c_tilde = torch.tanh(self.conv_c_c(o_t_1 * c_t_1) + self.conv_c_x(x_att) + x_flow_c)
c = (f_x * state_inp[0]) + (i_x * c_tilde)

c_vec = self.avgpool(c).view(c.size(0), -1)
c_logits = self.c_classifier(c_vec) + self.coupling_fc(self.avgpool(x_att).view(x_att.size(0), -1))
c_probs, c_idxs = c_logits.sort(1, True)
c_class_idx = c_idxs[:, 0]
c_cam = self.c_classifier.weight[c_class_idx].unsqueeze(2).unsqueeze(2) * c
o_x = torch.sigmoid(self.conv_o_x(o_t_1 * c_t_1) + self.conv_o_c(c_cam))

state_att = [a, s]
state_inp = [c, o_x]
return state_att, state_inp, x_att
51 changes: 51 additions & 0 deletions LSTA_flow/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# LSTA: Long Short-Term Attention for Egocentric Action Recognition


We release the PyTorch code of [LSTA](https://arxiv.org/pdf/1811.10698.pdf)

![LSTA](https://drive.google.com/uc?export=view&id=1gf9Ih_mK1xsd4ZVZvP7tsy4QJEkK1Dsz)


#### Reference
Please cite our paper if you find the repo and the paper useful.
```
@InProceedings{Sudhakaran_2019_CVPR,
author = {Sudhakaran, Swathikiran and Escalera, Sergio and Lanz, Oswald},
title = {{LSTA: Long Short-Term Attention for Egocentric Action Recognition}},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
```

#### Prerequisites

* Python 3.5
* Pytorch 0.3.1


#### Training

* ##### RGB
To train the models, run the script train_rgb.sh, which contains:
````
python main_rgb.py --dataset gtea_61 --root_dir dataset --outDir experiments --stage 1 \
--seqLen 25 --trainBatchSize 32 --numEpochs 200 --lr 0.001 --stepSize 25 75 150 \
--decayRate 0.1 --memSize 512 --outPoolSize 100 --evalInterval 5 --split 2
````

#### Evaluation
Testing on the trained models can be done by running the script test_rgb.sh
#### **Pretrained models**

The pre-trained models can be downloaded from the following [Google Drive link](https://drive.google.com/drive/folders/1KIUuoaa1_ipGFOYZB6Oe3yITBKZlrpWr?usp=sharing)



#### TODO
1. EPIC-KITCHENS code
2. Flow and two stream codes
3. Pre-trained models



34 changes: 34 additions & 0 deletions LSTA_flow/attentionModel.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import resNetNew
from torch.autograd import Variable
from MyConvLSTACell import *
import torch


class attentionModel(nn.Module):
def __init__(self, num_classes=51, mem_size=512, c_cam_classes=1000):
super(attentionModel, self).__init__()
self.num_classes = num_classes
self.resNet = resNetNew.resnet34(True, True)
self.mem_size = mem_size
self.lsta_cell = MyConvLSTACell(512, mem_size, c_cam_classes)
self.avgpool = nn.AvgPool2d(7)
self.dropout = nn.Dropout(0.7)
self.fc = nn.Linear(mem_size, self.num_classes)
self.classifier = nn.Sequential(self.dropout, self.fc)

def forward(self, inputVariable, device):
state_att = (torch.zeros(inputVariable.size(1), 1, 7, 7).to(device),
torch.zeros(inputVariable.size(1), 1, 7, 7).to(device))
state_inp = ((torch.zeros((inputVariable.size(1), self.mem_size, 7, 7)).to(device)),
(torch.zeros((inputVariable.size(1), self.mem_size, 7, 7)).to(device)))
for t in range(inputVariable.size(0)):
logit, feature_conv, x = self.resNet(inputVariable[t])
bz, nc, h, w = feature_conv.size()
feature_conv1 = feature_conv.view(bz, nc, h * w)
probs, idxs = logit.sort(1, True)
class_idx = idxs[:, 0]
cam = torch.bmm(self.resNet.fc.weight[class_idx].unsqueeze(1), feature_conv1).view(x.size(0), 1, 7, 7)
state_att, state_inp, _ = self.lsta_cell(x, cam, state_att, state_inp)
feats = self.avgpool(state_inp[0]).view(state_inp[0].size(0), -1)
logits = self.classifier(feats)
return logits, feats
Loading

0 comments on commit 2233593

Please sign in to comment.