Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chainlit bonus material fixes #361

Merged
merged 9 commits into from
Sep 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ ch07/04_preference-tuning-with-dpo/loss-plot.pdf
# Other
ch05/06_user_interface/chainlit.md
ch05/06_user_interface/.chainlit
ch05/06_user_interface/.files

# Temporary OS-related files
.DS_Store
Expand Down
2 changes: 1 addition & 1 deletion ch05/06_user_interface/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ To implement this user interface, we use the open-source [Chainlit Python packag

First, we install the `chainlit` package via

```python
```bash
pip install chainlit
```

Expand Down
8 changes: 4 additions & 4 deletions ch05/06_user_interface/app_orig.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
token_ids_to_text,
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def get_model_and_tokenizer():
"""
Expand Down Expand Up @@ -44,8 +46,6 @@ def get_model_and_tokenizer():

BASE_CONFIG.update(model_configs[CHOOSE_MODEL])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")

gpt = GPTModel(BASE_CONFIG)
Expand All @@ -67,9 +67,9 @@ async def main(message: chainlit.Message):
"""
The main Chainlit function.
"""
token_ids = generate(
token_ids = generate( # function uses `with torch.no_grad()` internally already
model=model,
idx=text_to_token_ids(message.content, tokenizer), # The user text is provided via as `message.content`
idx=text_to_token_ids(message.content, tokenizer).to(device), # The user text is provided via as `message.content`
max_new_tokens=50,
context_size=model_config["context_length"],
top_k=1,
Expand Down
10 changes: 5 additions & 5 deletions ch05/06_user_interface/app_own.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@
token_ids_to_text,
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def get_model_and_tokenizer():
"""
Expand All @@ -34,16 +36,14 @@ def get_model_and_tokenizer():
"qkv_bias": False # Query-key-value bias
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = tiktoken.get_encoding("gpt2")

model_path = Path("..") / "01_main-chapter-code" / "model.pth"
if not model_path.exists():
print(f"Could not find the {model_path} file. Please run the chapter 5 code (ch05.ipynb) to generate the model.pth file.")
sys.exit()

checkpoint = torch.load("model.pth", weights_only=True)
checkpoint = torch.load(model_path, weights_only=True)
model = GPTModel(GPT_CONFIG_124M)
model.load_state_dict(checkpoint)
model.to(device)
Expand All @@ -60,9 +60,9 @@ async def main(message: chainlit.Message):
"""
The main Chainlit function.
"""
token_ids = generate(
token_ids = generate( # function uses `with torch.no_grad()` internally already
model=model,
idx=text_to_token_ids(message.content, tokenizer), # The user text is provided via as `message.content`
idx=text_to_token_ids(message.content, tokenizer).to(device), # The user text is provided via as `message.content`
max_new_tokens=50,
context_size=model_config["context_length"],
top_k=1,
Expand Down