Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add groupby_max multi-threaded benchmark #16154

Merged
4 changes: 2 additions & 2 deletions cpp/benchmarks/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -226,8 +226,8 @@ ConfigureBench(
)

ConfigureNVBench(
GROUPBY_NVBENCH groupby/group_max.cpp groupby/group_nunique.cpp groupby/group_rank.cpp
groupby/group_struct_keys.cpp
GROUPBY_NVBENCH groupby/group_max.cpp groupby/group_max_multistream.cpp groupby/group_max_multithreaded.cpp
groupby/group_nunique.cpp groupby/group_rank.cpp groupby/group_struct_keys.cpp
)

# ##################################################################################################
Expand Down
103 changes: 103 additions & 0 deletions cpp/benchmarks/groupby/group_max_multistream.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>

#include <cudf/detail/utilities/stream_pool.hpp>
#include <cudf/groupby.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/pinned_memory.hpp>
#include <cudf/utilities/thread_pool.hpp>

#include <nvbench/nvbench.cuh>

template <typename Type>
void groupby_max_multistream_helper(nvbench::state& state,
cudf::size_type num_rows,
cudf::size_type cardinality,
double null_probability)
{
auto const keys = [&] {
data_profile const profile =
data_profile_builder()
.cardinality(cardinality)
.no_validity()
.distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows);
return create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile);
}();

auto const vals = [&] {
auto builder = data_profile_builder().cardinality(0).distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows);
if (null_probability > 0) {
builder.null_probability(null_probability);
} else {
builder.no_validity();
}
return create_random_column(
cudf::type_to_id<Type>(), row_count{num_rows}, data_profile{builder});
}();

auto keys_view = keys->view();
auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys_view, keys_view, keys_view}));

auto const num_streams = state.get_int64("num_streams");

auto streams = cudf::detail::fork_streams(cudf::get_default_stream(), num_streams);

std::vector<std::vector<cudf::groupby::aggregation_request>> requests(num_streams);
for (int64_t i = 0; i < num_streams; i++) {
requests[i].emplace_back(cudf::groupby::aggregation_request());
requests[i][0].values = vals->view();
requests[i][0].aggregations.push_back(cudf::make_max_aggregation<cudf::groupby_aggregation>());
}

auto const mem_stats_logger = cudf::memory_stats_logger();
state.exec(
nvbench::exec_tag::sync | nvbench::exec_tag::timer, [&](nvbench::launch& launch, auto& timer) {
auto perform_agg = [&](int index) { gb_obj.aggregate(requests[index], streams[index]); };
timer.start();
for (int i = 0; i < num_streams; i++) {
perform_agg(i);
}
cudf::detail::join_streams(streams, cudf::get_default_stream());
timer.stop();
});

auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

template <typename Type>
void bench_groupby_max_multistream(nvbench::state& state, nvbench::type_list<Type>)
{
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const null_probability = state.get_float64("null_probability");

groupby_max_multistream_helper<Type>(state, num_rows, cardinality, null_probability);
}
PointKernel marked this conversation as resolved.
Show resolved Hide resolved

NVBENCH_BENCH_TYPES(bench_groupby_max_multistream,
NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t, float, double>))
.set_name("groupby_max_multistream")
.add_int64_axis("cardinality", {0})
.add_int64_power_of_two_axis("num_rows", {12, 18})
.add_float64_axis("null_probability", {0, 0.1, 0.9})
.add_int64_axis("num_streams", {1, 2, 4, 8});
117 changes: 117 additions & 0 deletions cpp/benchmarks/groupby/group_max_multithreaded.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>

#include <cudf/detail/utilities/stream_pool.hpp>
#include <cudf/groupby.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/pinned_memory.hpp>
#include <cudf/utilities/thread_pool.hpp>

#include <nvbench/nvbench.cuh>

template <typename Type>
void groupby_max_multithreaded_helper(nvbench::state& state,
cudf::size_type num_rows,
cudf::size_type cardinality,
double null_probability)
{
auto const keys = [&] {
data_profile const profile =
data_profile_builder()
.cardinality(cardinality)
.no_validity()
.distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows);
return create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile);
}();

auto const vals = [&] {
auto builder = data_profile_builder().cardinality(0).distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows);
if (null_probability > 0) {
builder.null_probability(null_probability);
} else {
builder.no_validity();
}
return create_random_column(
cudf::type_to_id<Type>(), row_count{num_rows}, data_profile{builder});
}();

auto keys_view = keys->view();
auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys_view, keys_view, keys_view}));

auto const num_threads = state.get_int64("num_threads");

auto streams = cudf::detail::fork_streams(cudf::get_default_stream(), num_threads);
cudf::detail::thread_pool threads(num_threads);

std::vector<std::vector<cudf::groupby::aggregation_request>> requests(num_threads);
for (int64_t i = 0; i < num_threads; i++) {
vuule marked this conversation as resolved.
Show resolved Hide resolved
requests[i].emplace_back(cudf::groupby::aggregation_request());
requests[i][0].values = vals->view();
requests[i][0].aggregations.push_back(cudf::make_max_aggregation<cudf::groupby_aggregation>());
}

auto const mem_stats_logger = cudf::memory_stats_logger();
state.exec(
nvbench::exec_tag::sync | nvbench::exec_tag::timer, [&](nvbench::launch& launch, auto& timer) {
auto perform_agg = [&](int index) { gb_obj.aggregate(requests[index], streams[index]); };
threads.paused = true;
for (int64_t i = 0; i < num_threads; ++i) {
threads.submit(perform_agg, i);
}
timer.start();
srinivasyadav18 marked this conversation as resolved.
Show resolved Hide resolved
threads.paused = false;
threads.wait_for_tasks();
PointKernel marked this conversation as resolved.
Show resolved Hide resolved
cudf::detail::join_streams(streams, cudf::get_default_stream());
vuule marked this conversation as resolved.
Show resolved Hide resolved
timer.stop();
});

auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

template <typename Type>
void bench_groupby_max_multithreaded(nvbench::state& state, nvbench::type_list<Type>)
PointKernel marked this conversation as resolved.
Show resolved Hide resolved
{
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const null_probability = state.get_float64("null_probability");

groupby_max_multithreaded_helper<Type>(state, num_rows, cardinality, null_probability);
}

template <typename Type>
void bench_groupby_max_multithreaded_cardinality(nvbench::state& state, nvbench::type_list<Type>)
{
auto constexpr num_rows = 20'000'000;
auto constexpr null_probability = 0.;
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));

groupby_max_multithreaded_helper<Type>(state, num_rows, cardinality, null_probability);
}
PointKernel marked this conversation as resolved.
Show resolved Hide resolved

NVBENCH_BENCH_TYPES(bench_groupby_max_multithreaded,
NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t, float, double>))
.set_name("groupby_max_multithreaded")
.add_int64_axis("cardinality", {0})
.add_int64_power_of_two_axis("num_rows", {12, 18})
.add_float64_axis("null_probability", {0, 0.1, 0.9})
.add_int64_axis("num_threads", {1, 2, 4, 8});
Loading