Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[XEB] Split into three files #3794

Merged
merged 2 commits into from
Feb 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
706 changes: 1 addition & 705 deletions cirq/experiments/fidelity_estimation.py

Large diffs are not rendered by default.

437 changes: 1 addition & 436 deletions cirq/experiments/fidelity_estimation_test.py

Large diffs are not rendered by default.

298 changes: 298 additions & 0 deletions cirq/experiments/xeb_fitting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,298 @@
# Copyright 2021 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Estimation of fidelity associated with experimental circuit executions."""
from abc import abstractmethod
from dataclasses import dataclass
from typing import (
List,
Optional,
Sequence,
Tuple,
TYPE_CHECKING,
)

import numpy as np
import pandas as pd
import scipy.optimize
import sympy

from cirq import ops
from cirq.circuits import Circuit
from cirq.experiments.xeb_simulation import simulate_2q_xeb_circuits

if TYPE_CHECKING:
import cirq
import multiprocessing

THETA_SYMBOL, ZETA_SYMBOL, CHI_SYMBOL, GAMMA_SYMBOL, PHI_SYMBOL = sympy.symbols(
'theta zeta chi gamma phi'
)
SQRT_ISWAP = ops.ISWAP ** 0.5


def benchmark_2q_xeb_fidelities(
sampled_df: pd.DataFrame,
circuits: Sequence['cirq.Circuit'],
cycle_depths: Sequence[int],
param_resolver: 'cirq.ParamResolverOrSimilarType' = None,
pool: Optional['multiprocessing.pool.Pool'] = None,
):
"""Simulate and benchmark two-qubit XEB circuits.

This uses the estimator from
`cirq.experiments.fidelity_estimation.least_squares_xeb_fidelity_from_expectations`, but
adapted for use on pandas DataFrames for efficient vectorized operation.
Comment on lines +53 to +55
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is a new note


Args:
sampled_df: The sampled results to benchmark. This is likely produced by a call to
`sample_2q_xeb_circuits`.
circuits: The library of circuits corresponding to the sampled results in `sampled_df`.
cycle_depths: The sequence of cycle depths to simulate the circuits.
param_resolver: If circuits contain parameters, resolve according to this ParamResolver
prior to simulation
pool: If provided, execute the simulations in parallel.

Returns:
A DataFrame with columns 'cycle_depth' and 'fidelity'.
"""
simulated_df = simulate_2q_xeb_circuits(
circuits=circuits, cycle_depths=cycle_depths, param_resolver=param_resolver, pool=pool
)
df = sampled_df.join(simulated_df)

def _summary_stats(row):
D = 4 # Two qubits
row['e_u'] = np.sum(row['pure_probs'] ** 2)
row['u_u'] = np.sum(row['pure_probs']) / D
row['m_u'] = np.sum(row['pure_probs'] * row['sampled_probs'])

row['y'] = row['m_u'] - row['u_u']
row['x'] = row['e_u'] - row['u_u']

row['numerator'] = row['x'] * row['y']
row['denominator'] = row['x'] ** 2
return row

df = df.apply(_summary_stats, axis=1)

def per_cycle_depth(df):
"""This function is applied per cycle_depth in the following groupby aggregation."""
fid_lsq = df['numerator'].sum() / df['denominator'].sum()
ret = {'fidelity': fid_lsq}

def _try_keep(k):
"""If all the values for a key `k` are the same in this group, we can keep it."""
if k not in df.columns:
return # coverage: ignore
vals = df[k].unique()
if len(vals) == 1:
ret[k] = vals[0]
else:
# coverage: ignore
raise AssertionError(
f"When computing per-cycle-depth fidelity, multiple "
f"values for {k} were grouped together: {vals}"
)

_try_keep('q0')
_try_keep('q1')
_try_keep('pair_name')
return pd.Series(ret)

if 'pair_i' in df.columns:
groupby_names = ['layer_i', 'pair_i', 'cycle_depth']
else:
groupby_names = ['cycle_depth']

return df.reset_index().groupby(groupby_names).apply(per_cycle_depth).reset_index()


# mypy issue: https://github.com/python/mypy/issues/5374
@dataclass(frozen=True) # type: ignore
class XEBPhasedFSimCharacterizationOptions:
"""Options for calibrating a PhasedFSim-like gate using XEB.

You may want to use more specific subclasses like `SqrtISwapXEBOptions`
which have sensible defaults.

Attributes:
characterize_theta: Whether to characterize θ angle.
characterize_zeta: Whether to characterize ζ angle.
characterize_chi: Whether to characterize χ angle.
characterize_gamma: Whether to characterize γ angle.
characterize_phi: Whether to characterize φ angle.
theta_default: The initial or default value to assume for the θ angle.
zeta_default: The initial or default value to assume for the ζ angle.
chi_default: The initial or default value to assume for the χ angle.
gamma_default: The initial or default value to assume for the γ angle.
phi_default: The initial or default value to assume for the φ angle.
"""

characterize_theta: bool = True
characterize_zeta: bool = True
characterize_chi: bool = True
characterize_gamma: bool = True
characterize_phi: bool = True

theta_default: float = 0
zeta_default: float = 0
chi_default: float = 0
gamma_default: float = 0
phi_default: float = 0

@staticmethod
@abstractmethod
def should_parameterize(op: 'cirq.Operation') -> bool:
"""Whether to replace `op` with a parameterized version."""

def get_initial_simplex_and_names(
self, initial_simplex_step_size: float = 0.1
) -> Tuple[np.ndarray, List[str]]:
"""Get an initial simplex and parameter names for the optimization implied by these options.

The initial simplex initiates the Nelder-Mead optimization parameter. We
use the standard simplex of `x0 + s*basis_vec` where x0 is given by the
`xxx_default` attributes, s is `initial_simplex_step_size` and `basis_vec`
is a one-hot encoded vector for each parameter for which the `parameterize_xxx`
attribute is True.

We also return a list of parameter names so the Cirq `param_resovler`
can be accurately constructed during optimization.
"""
x0 = []
names = []
if self.characterize_theta:
x0 += [self.theta_default]
names += [THETA_SYMBOL.name]
if self.characterize_zeta:
x0 += [self.zeta_default]
names += [ZETA_SYMBOL.name]
if self.characterize_chi:
x0 += [self.chi_default]
names += [CHI_SYMBOL.name]
if self.characterize_gamma:
x0 += [self.gamma_default]
names += [GAMMA_SYMBOL.name]
if self.characterize_phi:
x0 += [self.phi_default]
names += [PHI_SYMBOL.name]

x0 = np.asarray(x0)
n_param = len(x0)
initial_simplex = [x0]
for i in range(n_param):
basis_vec = np.eye(1, n_param, i)[0]
initial_simplex += [x0 + initial_simplex_step_size * basis_vec]
initial_simplex = np.asarray(initial_simplex)

return initial_simplex, names


@dataclass(frozen=True)
class SqrtISwapXEBOptions(XEBPhasedFSimCharacterizationOptions):
"""Options for calibrating a sqrt(ISWAP) gate using XEB.

As such, the default for theta is changed to -pi/4 and the parameterization
predicate seeks out sqrt(ISWAP) gates.
"""

theta_default: float = -np.pi / 4

@staticmethod
def should_parameterize(op: 'cirq.Operation') -> bool:
return op.gate == SQRT_ISWAP


def parameterize_phased_fsim_circuit(
circuit: 'cirq.Circuit',
phased_fsim_options: XEBPhasedFSimCharacterizationOptions,
) -> 'cirq.Circuit':
"""Parameterize PhasedFSim-like gates in a given circuit according to
`phased_fsim_options`.
"""
options = phased_fsim_options
theta = THETA_SYMBOL if options.characterize_theta else options.theta_default
zeta = ZETA_SYMBOL if options.characterize_zeta else options.zeta_default
chi = CHI_SYMBOL if options.characterize_chi else options.chi_default
gamma = GAMMA_SYMBOL if options.characterize_gamma else options.gamma_default
phi = PHI_SYMBOL if options.characterize_phi else options.phi_default

fsim_gate = ops.PhasedFSimGate(theta=theta, zeta=zeta, chi=chi, gamma=gamma, phi=phi)
return Circuit(
ops.Moment(
fsim_gate.on(*op.qubits) if options.should_parameterize(op) else op
for op in moment.operations
)
for moment in circuit.moments
)


def characterize_phased_fsim_parameters_with_xeb(
sampled_df: pd.DataFrame,
parameterized_circuits: List['cirq.Circuit'],
cycle_depths: Sequence[int],
phased_fsim_options: XEBPhasedFSimCharacterizationOptions,
initial_simplex_step_size: float = 0.1,
xatol: float = 1e-3,
fatol: float = 1e-3,
verbose: bool = True,
pool: Optional['multiprocessing.pool.Pool'] = None,
):
"""Run a classical optimization to fit phased fsim parameters to experimental data, and
thereby characterize PhasedFSim-like gates.

Args:
sampled_df: The DataFrame of sampled two-qubit probability distributions returned
from `sample_2q_xeb_circuits`.
parameterized_circuits: The circuits corresponding to those sampled in `sampled_df`,
but with some gates parameterized, likely by using `parameterize_phased_fsim_circuit`.
cycle_depths: The depths at which circuits were truncated.
phased_fsim_options: A set of options that controls the classical optimization loop
for characterizing the parameterized gates.
initial_simplex_step_size: Set the size of the initial simplex for Nelder-Mead.
xatol: The `xatol` argument for Nelder-Mead. This is the absolute error for convergence
in the parameters.
fatol: The `fatol` argument for Nelder-Mead. This is the absolute error for convergence
in the function evaluation.
verbose: Whether to print progress updates.
pool: An optional multiprocessing pool to execute circuit simulations in parallel.
"""
initial_simplex, names = phased_fsim_options.get_initial_simplex_and_names(
initial_simplex_step_size=initial_simplex_step_size
)
x0 = initial_simplex[0]

def _mean_infidelity(angles):
params = dict(zip(names, angles))
if verbose:
params_str = ''
for name, val in params.items():
params_str += f'{name:5s} = {val:7.3g} '
print("Simulating with {}".format(params_str))
fids = benchmark_2q_xeb_fidelities(
sampled_df, parameterized_circuits, cycle_depths, param_resolver=params, pool=pool
)

loss = 1 - fids['fidelity'].mean()
if verbose:
print("Loss: {:7.3g}".format(loss), flush=True)
return loss

res = scipy.optimize.minimize(
_mean_infidelity,
x0=x0,
options={'initial_simplex': initial_simplex, 'xatol': xatol, 'fatol': fatol},
method='nelder-mead',
)
return res
Loading