Skip to content

Add full_like, ones_like, and zeros_like for XTensorVariable #1514

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pytensor/xtensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import pytensor.xtensor.rewriting
from pytensor.xtensor import linalg
from pytensor.xtensor.math import dot
from pytensor.xtensor.shape import concat
from pytensor.xtensor.shape import concat, full_like, ones_like, zeros_like
from pytensor.xtensor.type import (
as_xtensor,
xtensor,
Expand Down
98 changes: 98 additions & 0 deletions pytensor/xtensor/shape.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from pytensor.tensor.type import integer_dtypes
from pytensor.tensor.utils import get_static_shape_from_size_variables
from pytensor.xtensor.basic import XOp
from pytensor.xtensor.math import cast, second
from pytensor.xtensor.type import as_xtensor, xtensor


Expand Down Expand Up @@ -498,3 +499,100 @@ def expand_dims(x, dim=None, create_index_for_new_dim=None, axis=None, **dim_kwa
x = Transpose(dims=tuple(target_dims))(x)

return x


def full_like(x, fill_value, dtype=None):
"""Create a new XTensorVariable with the same shape and dimensions, filled with a specified value.

Parameters
----------
x : XTensorVariable
The tensor to fill.
fill_value : scalar or XTensorVariable
The value to fill the new tensor with.
dtype : str or np.dtype, optional
The data type of the new tensor. If None, uses the dtype of the input tensor.

Returns
-------
XTensorVariable
A new tensor with the same shape and dimensions as self, filled with fill_value.

Examples
--------
>>> from pytensor.xtensor import xtensor, full_like
>>> x = xtensor(dtype="float64", dims=("a", "b"), shape=(2, 3))
>>> y = full_like(x, 5.0)
>>> assert y.dims == ("a", "b")
>>> assert y.type.shape == (2, 3)
"""
x = as_xtensor(x)
fill_value = as_xtensor(fill_value)

# Check that fill_value is a scalar (ndim=0)
if fill_value.type.ndim != 0:
raise ValueError(
f"fill_value must be a scalar, got ndim={fill_value.type.ndim}"
)

# Handle dtype conversion
if dtype is not None:
# If dtype is specified, cast the fill_value to that dtype
fill_value = cast(fill_value, dtype)
else:
# If dtype is None, cast the fill_value to the input tensor's dtype
# This matches xarray's behavior where it preserves the original dtype
fill_value = cast(fill_value, x.type.dtype)

# Use the xtensor second function
return second(x, fill_value)


def ones_like(x, dtype=None):
"""Create a new XTensorVariable with the same shape and dimensions, filled with ones.

Parameters
----------
x : XTensorVariable
The tensor to fill.
dtype : str or np.dtype, optional
The data type of the new tensor. If None, uses the dtype of the input tensor.

Returns:
XTensorVariable
A new tensor with the same shape and dimensions as self, filled with ones.

Examples
--------
>>> from pytensor.xtensor import xtensor, full_like
>>> x = xtensor(dtype="float64", dims=("a", "b"), shape=(2, 3))
>>> y = ones_like(x)
>>> assert y.dims == ("a", "b")
>>> assert y.type.shape == (2, 3)
"""
return full_like(x, 1.0, dtype=dtype)


def zeros_like(x, dtype=None):
"""Create a new XTensorVariable with the same shape and dimensions, filled with zeros.

Parameters
----------
x : XTensorVariable
The tensor to fill.
dtype : str or np.dtype, optional
The data type of the new tensor. If None, uses the dtype of the input tensor.

Returns:
XTensorVariable
A new tensor with the same shape and dimensions as self, filled with zeros.

Examples
--------
>>> from pytensor.xtensor import xtensor, full_like
>>> x = xtensor(dtype="float64", dims=("a", "b"), shape=(2, 3))
>>> y = zeros_like(x)
>>> assert y.dims == ("a", "b")
>>> assert y.type.shape == (2, 3)
"""
return full_like(x, 0.0, dtype=dtype)
154 changes: 150 additions & 4 deletions tests/xtensor/test_shape.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,10 @@
from itertools import chain, combinations

import numpy as np
import xarray as xr
from xarray import DataArray
from xarray import concat as xr_concat

import pytensor.xtensor as px
from pytensor.tensor import scalar
from pytensor.xtensor.shape import (
concat,
Expand Down Expand Up @@ -226,7 +227,7 @@ def test_concat(dim):
x3_test = xr_random_like(x3, rng)

res = fn(x1_test, x2_test, x3_test)
expected_res = xr_concat([x1_test, x2_test, x3_test], dim=dim)
expected_res = xr.concat([x1_test, x2_test, x3_test], dim=dim)
xr_assert_allclose(res, expected_res)


Expand All @@ -248,7 +249,7 @@ def test_concat_with_broadcast(dim):
x3_test = xr_random_like(x3, rng)
x4_test = xr_random_like(x4, rng)
res = fn(x1_test, x2_test, x3_test, x4_test)
expected_res = xr_concat([x1_test, x2_test, x3_test, x4_test], dim=dim)
expected_res = xr.concat([x1_test, x2_test, x3_test, x4_test], dim=dim)
xr_assert_allclose(res, expected_res)


Expand All @@ -263,7 +264,7 @@ def test_concat_scalar():
x1_test = xr_random_like(x1)
x2_test = xr_random_like(x2)
res = fn(x1_test, x2_test)
expected_res = xr_concat([x1_test, x2_test], dim="new_dim")
expected_res = xr.concat([x1_test, x2_test], dim="new_dim")
xr_assert_allclose(res, expected_res)


Expand Down Expand Up @@ -466,3 +467,148 @@ def test_expand_dims_errors():
# Test with a numpy array as dim (not supported)
with pytest.raises(TypeError, match="unhashable type"):
y.expand_dims(np.array([1, 2]))


def test_full_like():
"""Test full_like function, comparing with xarray's full_like."""

# Basic functionality with scalar fill_value
x = xtensor("x", dims=("a", "b"), shape=(2, 3), dtype="float64")
x_test = xr_arange_like(x)

y1 = px.full_like(x, 5.0)
fn1 = xr_function([x], y1)
result1 = fn1(x_test)
expected1 = xr.full_like(x_test, 5.0)
xr_assert_allclose(result1, expected1, check_dtype=True)

# Other dtypes
x_3d = xtensor("x_3d", dims=("a", "b", "c"), shape=(2, 3, 4), dtype="float32")
x_3d_test = xr_arange_like(x_3d)

y7 = px.full_like(x_3d, -1.0)
fn7 = xr_function([x_3d], y7)
result7 = fn7(x_3d_test)
expected7 = xr.full_like(x_3d_test, -1.0)
xr_assert_allclose(result7, expected7, check_dtype=True)

# Integer dtype
y3 = px.full_like(x, 5.0, dtype="int32")
fn3 = xr_function([x], y3)
result3 = fn3(x_test)
expected3 = xr.full_like(x_test, 5.0, dtype="int32")
xr_assert_allclose(result3, expected3, check_dtype=True)

# Different fill_value types
y4 = px.full_like(x, np.array(3.14))
fn4 = xr_function([x], y4)
result4 = fn4(x_test)
expected4 = xr.full_like(x_test, 3.14)
xr_assert_allclose(result4, expected4, check_dtype=True)

# Integer input with float fill_value
x_int = xtensor("x_int", dims=("a", "b"), shape=(2, 3), dtype="int32")
x_int_test = DataArray(np.arange(6, dtype="int32").reshape(2, 3), dims=("a", "b"))

y5 = px.full_like(x_int, 2.5)
fn5 = xr_function([x_int], y5)
result5 = fn5(x_int_test)
expected5 = xr.full_like(x_int_test, 2.5)
xr_assert_allclose(result5, expected5, check_dtype=True)

# Symbolic shapes
x_sym = xtensor("x_sym", dims=("a", "b"), shape=(None, 3))
x_sym_test = DataArray(
np.arange(6, dtype=x_sym.type.dtype).reshape(2, 3), dims=("a", "b")
)

y6 = px.full_like(x_sym, 7.0)
fn6 = xr_function([x_sym], y6)
result6 = fn6(x_sym_test)
expected6 = xr.full_like(x_sym_test, 7.0)
xr_assert_allclose(result6, expected6, check_dtype=True)

# Boolean dtype
x_bool = xtensor("x_bool", dims=("a", "b"), shape=(2, 3), dtype="bool")
x_bool_test = DataArray(
np.array([[True, False, True], [False, True, False]]), dims=("a", "b")
)

y8 = px.full_like(x_bool, True)
fn8 = xr_function([x_bool], y8)
result8 = fn8(x_bool_test)
expected8 = xr.full_like(x_bool_test, True)
xr_assert_allclose(result8, expected8, check_dtype=True)

# Complex dtype
x_complex = xtensor("x_complex", dims=("a", "b"), shape=(2, 3), dtype="complex64")
x_complex_test = DataArray(
np.arange(6, dtype="complex64").reshape(2, 3), dims=("a", "b")
)

y9 = px.full_like(x_complex, 1 + 2j)
fn9 = xr_function([x_complex], y9)
result9 = fn9(x_complex_test)
expected9 = xr.full_like(x_complex_test, 1 + 2j)
xr_assert_allclose(result9, expected9, check_dtype=True)

# Symbolic fill value
x_sym_fill = xtensor("x_sym_fill", dims=("a", "b"), shape=(2, 3), dtype="float64")
fill_val = xtensor("fill_val", dims=(), shape=(), dtype="float64")
x_sym_fill_test = xr_arange_like(x_sym_fill)
fill_val_test = DataArray(3.14, dims=())

y10 = px.full_like(x_sym_fill, fill_val)
fn10 = xr_function([x_sym_fill, fill_val], y10)
result10 = fn10(x_sym_fill_test, fill_val_test)
expected10 = xr.full_like(x_sym_fill_test, 3.14)
xr_assert_allclose(result10, expected10, check_dtype=True)

# Test dtype conversion to bool when neither input nor fill_value are bool
x_float = xtensor("x_float", dims=("a", "b"), shape=(2, 3), dtype="float64")
x_float_test = xr_arange_like(x_float)

y11 = px.full_like(x_float, 5.0, dtype="bool")
fn11 = xr_function([x_float], y11)
result11 = fn11(x_float_test)
expected11 = xr.full_like(x_float_test, 5.0, dtype="bool")
xr_assert_allclose(result11, expected11, check_dtype=True)

# Verify the result is actually boolean
assert result11.dtype == "bool"
assert expected11.dtype == "bool"


def test_full_like_errors():
"""Test full_like function errors."""
x = xtensor("x", dims=("a", "b"), shape=(2, 3), dtype="float64")
x_test = xr_arange_like(x)

with pytest.raises(ValueError, match="fill_value must be a scalar"):
px.full_like(x, x_test)


def test_ones_like():
"""Test ones_like function, comparing with xarray's ones_like."""
x = xtensor("x", dims=("a", "b"), shape=(2, 3), dtype="float64")
x_test = xr_arange_like(x)

y1 = px.ones_like(x)
fn1 = xr_function([x], y1)
result1 = fn1(x_test)
expected1 = xr.ones_like(x_test)
xr_assert_allclose(result1, expected1)
assert result1.dtype == expected1.dtype


def test_zeros_like():
"""Test zeros_like function, comparing with xarray's zeros_like."""
x = xtensor("x", dims=("a", "b"), shape=(2, 3), dtype="float64")
x_test = xr_arange_like(x)

y1 = px.zeros_like(x)
fn1 = xr_function([x], y1)
result1 = fn1(x_test)
expected1 = xr.zeros_like(x_test)
xr_assert_allclose(result1, expected1)
assert result1.dtype == expected1.dtype
23 changes: 21 additions & 2 deletions tests/xtensor/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,11 +37,30 @@ def xfn(*xr_inputs):
return xfn


def xr_assert_allclose(x, y, *args, **kwargs):
# Assert that two xarray DataArrays are close, ignoring coordinates
def xr_assert_allclose(x, y, check_dtype=False, *args, **kwargs):
"""Assert that two xarray DataArrays are close, ignoring coordinates.

Mostly a wrapper around xarray.testing.assert_allclose,
but with the option to check the dtype.

Parameters
----------
x : xarray.DataArray
The first xarray DataArray to compare.
y : xarray.DataArray
The second xarray DataArray to compare.
check_dtype : bool, optional
If True, check that the dtype of the two DataArrays is the same.
*args :
Additional arguments to pass to xarray.testing.assert_allclose.
**kwargs :
Additional keyword arguments to pass to xarray.testing.assert_allclose.
"""
x = x.drop_vars(x.coords)
y = y.drop_vars(y.coords)
assert_allclose(x, y, *args, **kwargs)
if check_dtype:
assert x.dtype == y.dtype


def xr_arange_like(x):
Expand Down