Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TYP: Replace wildcardimports in toplevelinit as precursor for reshape,stata,io PRs #25936 #25940 #25939 #26019

Prev Previous commit
Next Next commit
Adding pandas.io and adding missing pandas core imports
  • Loading branch information
ryankarlos committed Apr 7, 2019
commit 7aa943b41a8e036c5a10b2638481de6342fcce40
43 changes: 24 additions & 19 deletions pandas/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,37 +42,42 @@
# let init-time option registration happen
import pandas.core.config_init


from pandas.core.api import (
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you organize these by section, e.g. something like

from pandas.core.api import (
    # dtype
    Int8Dtype.........

   # indexes
    Int64Index.....

  # tseries
   NaT, Period.....

  # conversion
   to_numeric, to_datetime...

  # missing
   isna, isnul.....

  # misc
  np, TimeGrouper....

DataFrame, Series, array, Panel, Int64Index, Interval,
IntervalIndex, Float64Index, Index, DatetimeIndex, Int64Index,
MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex,
CategoricalIndex, Categorical, to_datetime, to_timedelta,
to_numeric, Timedelta, Timestamp, NaT, Period, isna,
CategoricalDtype, PeriodDtype, DatetimeTZDtype, IntervalDtype,
DateOffset, factorize, unique, value_counts, interval_range,
Grouper)
Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype,
UInt16Dtype, UInt32Dtype, UInt64Dtype, factorize, unique,
value_counts, isna, isnull, notna, notnull, CategoricalDtype,
PeriodDtype, IntervalDtype, DatetimeTZDtype, Categorical,
array, Grouper, set_eng_float_format, Index, CategoricalIndex,
Int64Index, UInt64Index, RangeIndex, Float64Index, MultiIndex,
IntervalIndex, TimedeltaIndex, DatetimeIndex, PeriodIndex,
NaT, Period, period_range, Timedelta, timedelta_range,
Timestamp, date_range, bdate_range, Interval, interval_range,
Series, DataFrame, Panel, IndexSlice, to_numeric, DateOffset,
to_datetime, to_timedelta, np, TimeGrouper)

from pandas.core.sparse.api import (
SparseArray, SparseDataFrame, SparseSeries, SparseDtype)

from pandas.tseries.api import infer_freq
from pandas.tseries import offsets

from pandas.core.computation.api import eval

from pandas.core.reshape.api import (
concat, lreshape, melt, wide_to_long, merge, merge_asof,
merge_ordered, crosstab, pivot, pivot_table, get_dummies,
cut, qcut)

from pandas.core.computation.api import eval

from pandas.core.sparse.api import (
SparseArray, SparseDataFrame, SparseSeries, SparseDtype)

from pandas.core.internals import BlockManager, _safe_reshape, make_block
from pandas.core.arrays import DatetimeArray, IntervalArray, PeriodArray
from pandas.core.arrays.sparse import BlockIndex, IntIndex
from pandas.util._print_versions import show_versions

from pandas._libs import join
from pandas.io.api import (
read_clipboard, ExcelFile, ExcelWriter, read_excel,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you sort these

read_feather, read_gbq, read_html, read_json,
read_msgpack, to_msgpack, read_parquet, read_csv,
read_fwf, read_table, read_pickle, to_pickle,
HDFStore, read_hdf, read_sas, read_sql, read_sql_query,
read_sql_table, read_stata)

from pandas.util._print_versions import show_versions
from pandas.util._tester import test
import pandas.testing
import pandas.arrays
Expand Down