Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import numpy as np
from typing import List, Dict
from abc import ABCMeta, abstractmethod
from functools import singledispatch
from typing import Callable, Any, Union, Tuple
from typing import Sequence as SequenceType
from collections.abc import Sequence
Expand Down Expand Up @@ -46,15 +47,22 @@
}


@singledispatch
def _setup_size(size: Any, error_msg: str) -> SequenceType[int]:
# TODO: refactor into @singledispatch once Python 3.7 support is dropped
if isinstance(size, numbers.Number):
return int(size), int(size) # type: ignore
if isinstance(size, Sequence):
if len(size) == 1:
return size[0], size[0]
elif len(size) == 2:
return size
raise ValueError(error_msg)


@_setup_size.register
def _setup_size_number(size: numbers.Number, error_msg: str) -> SequenceType[int]:
return int(size), int(size) # type: ignore


@_setup_size.register
def _setup_size_sequence(size: Sequence, error_msg: str) -> SequenceType[int]:
if len(size) == 1:
return size[0], size[0]
elif len(size) == 2:
return size
raise ValueError(error_msg)


Expand All @@ -66,14 +74,19 @@ def _NHWC_to_NCHW(input_shape: List) -> List: # noqa N802
return new_shape


@singledispatch
def _to_list(transform: Callable) -> List:
# TODO: refactor into @singledispatch once Python 3.7 support is dropped
if isinstance(transform, torch.nn.Sequential):
return list(transform)
elif isinstance(transform, transforms.Compose):
return transform.transforms
else:
raise TypeError(f"Unsupported transform type: {type(transform)}")
raise TypeError(f"Unsupported transform type: {type(transform)}")


@_to_list.register
def _to_list_torch_sequential(transform: torch.nn.Sequential) -> List:
return list(transform)


@_to_list.register
def _to_list_transforms_compose(transform: transforms.Compose) -> List:
return transform.transforms


def _get_shape_layout_from_data(input_example: Union[torch.Tensor, np.ndarray, Image.Image]) -> Tuple[List, Layout]:
Expand Down