Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove openvino-dev dependency #2675

Merged
merged 7 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
replace export from ultralytics to onnx -> ir (ovc)
  • Loading branch information
kshpv committed May 13, 2024
commit 35216d23724c4473105c230f757af4a55fc46f6f
14 changes: 8 additions & 6 deletions examples/post_training_quantization/openvino/yolov8/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,12 +94,14 @@ def benchmark_performance(model_path, config) -> float:


def prepare_openvino_model(model: YOLO, model_name: str) -> Tuple[ov.Model, Path]:
model_path = Path(f"{ROOT}/{model_name}_openvino_model/{model_name}.xml")
if not model_path.exists():
model.export(format="openvino", dynamic=True, half=False)

model = ov.Core().read_model(model_path)
return model, model_path
ir_model_path = Path(f"{ROOT}/{model_name}_openvino_model/{model_name}.xml")
if not ir_model_path.exists():
onnx_model_path = Path(f"{ROOT}/{model_name}.onnx")
if not onnx_model_path.exists():
model.export(format="onnx", dynamic=True, half=False)

ov.save_model(ov.convert_model(onnx_model_path), ir_model_path)
return ov.Core().read_model(ir_model_path), ir_model_path


def quantize(model: ov.Model, data_loader: torch.utils.data.DataLoader, validator: Validator) -> ov.Model:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,12 +123,14 @@ def benchmark_performance(model_path, config) -> float:


def prepare_openvino_model(model: YOLO, model_name: str) -> Tuple[ov.Model, Path]:
model_path = Path(f"{ROOT}/{model_name}_openvino_model/{model_name}.xml")
if not model_path.exists():
model.export(format="openvino", dynamic=True, half=False)

model = ov.Core().read_model(model_path)
return model, model_path
ir_model_path = Path(f"{ROOT}/{model_name}_openvino_model/{model_name}.xml")
if not ir_model_path.exists():
onnx_model_path = Path(f"{ROOT}/{model_name}.onnx")
if not onnx_model_path.exists():
model.export(format="onnx", dynamic=True, half=False)

ov.save_model(ov.convert_model(onnx_model_path), ir_model_path)
return ov.Core().read_model(ir_model_path), ir_model_path


def quantize_ac(model: ov.Model, data_loader: torch.utils.data.DataLoader, validator_ac: Validator) -> ov.Model:
Expand Down
Loading