Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update threshold limits #49

Merged
merged 1 commit into from
May 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 4 additions & 13 deletions src/task/metrics/mean_cosine_sim/config.vsh.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,19 +19,10 @@ functionality:
min: -1
max: 1
maximize: true
- name: mean_cosine_sim_clipped_05
label: Mean Cosine Similarity clipped at 0.05
summary: The mean of cosine similarities per row (perturbation). Values are clipped to 0.05 adjusted p-values.
description: This metric is the same as `mean_cosine_sim`, but with the values clipped to [-log10(0.05), log10(0.05)].
repository_url: null
documentation_url: null
min: -1
max: 1
maximize: true
- name: mean_cosine_sim_clipped_01
label: Mean Cosine Similarity clipped at 0.01
summary: The mean of cosine similarities per row (perturbation). Values are clipped to 0.01 adjusted p-values.
description: This metric is the same as `mean_cosine_sim`, but with the values clipped to [-log10(0.01), log10(0.01)].
- name: mean_cosine_sim_clipped_0001
label: Mean Cosine Similarity clipped at 0.0001
summary: The mean of cosine similarities per row (perturbation). Values are clipped to 0.0001 adjusted p-values.
description: This metric is the same as `mean_cosine_sim`, but with the values clipped to [-log10(0.0001), log10(0.0001)].
repository_url: null
documentation_url: null
min: -1
Expand Down
40 changes: 14 additions & 26 deletions src/task/metrics/mean_cosine_sim/script.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,55 +21,43 @@
prediction = prediction[genes]

print("Clipping values", flush=True)
threshold_05 = -np.log10(0.05)
de_test_X_clipped_05 = np.clip(de_test_X, -threshold_05, threshold_05)
prediction_clipped_05 = np.clip(prediction.values, -threshold_05, threshold_05)
threshold_01 = -np.log10(0.01)
de_test_X_clipped_01 = np.clip(de_test_X, -threshold_01, threshold_01)
prediction_clipped_01 = np.clip(prediction.values, -threshold_01, threshold_01)
threshold_0001 = -np.log10(0.0001)
de_test_X_clipped_0001 = np.clip(de_test_X, -threshold_0001, threshold_0001)
prediction_clipped_0001 = np.clip(prediction.values, -threshold_0001, threshold_0001)

print("Calculate mean cosine similarity", flush=True)
mean_cosine_similarity = 0
mean_cosine_similarity_clipped_05 = 0
mean_cosine_similarity_clipped_01 = 0
mean_cosine_similarity_clipped_0001 = 0
for i in range(de_test_X.shape[0]):
y_i = de_test_X[i,]
y_hat_i = prediction.iloc[i]
y_i_clipped_05 = de_test_X_clipped_05[i,]
y_hat_i_clipped_05 = prediction_clipped_05[i]
y_i_clipped_01 = de_test_X_clipped_01[i,]
y_hat_i_clipped_01 = prediction_clipped_01[i]
y_i_clipped_0001 = de_test_X_clipped_0001[i,]
y_hat_i_clipped_0001 = prediction_clipped_0001[i]

dot_product = np.dot(y_i, y_hat_i)
dot_product_clipped_05 = np.dot(y_i_clipped_05, y_hat_i_clipped_05)
dot_product_clipped_01 = np.dot(y_i_clipped_01, y_hat_i_clipped_01)
dot_product_clipped_0001 = np.dot(y_i_clipped_0001, y_hat_i_clipped_0001)

norm_y_i = np.linalg.norm(y_i)
norm_y_i_clipped_05 = np.linalg.norm(y_i_clipped_05)
norm_y_i_clipped_01 = np.linalg.norm(y_i_clipped_01)
norm_y_i_clipped_0001 = np.linalg.norm(y_i_clipped_0001)
norm_y_hat_i = np.linalg.norm(y_hat_i)
norm_y_hat_i_clipped_05 = np.linalg.norm(y_hat_i_clipped_05)
norm_y_hat_i_clipped_01 = np.linalg.norm(y_hat_i_clipped_01)
norm_y_hat_i_clipped_0001 = np.linalg.norm(y_hat_i_clipped_0001)

cosine_similarity = dot_product / (norm_y_i * norm_y_hat_i)
cosine_similarity_clipped_05 = dot_product_clipped_05 / (norm_y_i_clipped_05 * norm_y_hat_i_clipped_05)
cosine_similarity_clipped_01 = dot_product_clipped_01 / (norm_y_i_clipped_01 * norm_y_hat_i_clipped_01)
cosine_similarity_clipped_0001 = dot_product_clipped_0001 / (norm_y_i_clipped_0001 * norm_y_hat_i_clipped_0001)

mean_cosine_similarity += cosine_similarity
mean_cosine_similarity_clipped_05 += cosine_similarity_clipped_05
mean_cosine_similarity_clipped_01 += cosine_similarity_clipped_01
mean_cosine_similarity_clipped_0001 += cosine_similarity_clipped_0001

mean_cosine_similarity /= de_test_X.shape[0]
mean_cosine_similarity_clipped_05 /= de_test_X.shape[0]
mean_cosine_similarity_clipped_01 /= de_test_X.shape[0]
mean_cosine_similarity_clipped_0001 /= de_test_X.shape[0]

print("Create output", flush=True)
output = ad.AnnData(
uns={
"dataset_id": de_test.uns["dataset_id"],
"method_id": par["method_id"],
"metric_ids": ["mean_cosine_sim", "mean_cosine_sim_clipped_05", "mean_cosine_sim_clipped_01"],
"metric_values": [mean_cosine_similarity, mean_cosine_similarity_clipped_05, mean_cosine_similarity_clipped_01]
"metric_ids": ["mean_cosine_sim", "mean_cosine_sim_clipped_0001"],
"metric_values": [mean_cosine_similarity, mean_cosine_similarity_clipped_0001]
}
)

Expand Down
34 changes: 8 additions & 26 deletions src/task/metrics/mean_rowwise_error/config.vsh.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,19 +19,10 @@ functionality:
min: 0
max: "+inf"
maximize: false
- name: mean_rowwise_rmse_clipped_05
label: Mean Rowwise RMSE clipped at 0.05
summary: The mean of the root mean squared error (RMSE) of each row in the matrix, where the values are clipped to 0.5 adjusted p-values
description: This metric is the same as `mean_rowwise_rmse`, but with the values clipped to [-log10(0.05), log10(0.05)].
repository_url: null
documentation_url: null
min: 0
max: "+inf"
maximize: false
- name: mean_rowwise_rmse_clipped_01
label: Mean Rowwise RMSE clipped at 0.01
summary: The mean of the root mean squared error (RMSE) of each row in the matrix, where the values are clipped to 0.1 adjusted p-values
description: This metric is the same as `mean_rowwise_rmse`, but with the values clipped to [-log10(0.01), log10(0.01)].
- name: mean_rowwise_rmse_clipped_0001
label: Mean Rowwise RMSE clipped at 0.0001
summary: The mean of the root mean squared error (RMSE) of each row in the matrix, where the values are clipped to 0.0001 adjusted p-values
description: This metric is the same as `mean_rowwise_rmse`, but with the values clipped to [-log10(0.0001), log10(0.0001)].
repository_url: null
documentation_url: null
min: 0
Expand All @@ -53,19 +44,10 @@ functionality:
min: 0
max: "+inf"
maximize: false
- name: mean_rowwise_mae_clipped_05
label: Mean Rowwise MAE clipped at 0.05
summary: The mean of the absolute error (MAE) of each row in the matrix. The values are clipped to 0.5 adjusted p-values.
description: This metric is the same as `mean_rowwise_mae`, but with the values clipped to [-log10(0.05), log10(0.05)].
repository_url: null
documentation_url: null
min: 0
max: "+inf"
maximize: false
- name: mean_rowwise_mae_clipped_01
label: Mean Rowwise MAE clipped at 0.01
summary: The mean of the absolute error (MAE) of each row in the matrix. The values are clipped to 0.1 adjusted p-values.
description: This metric is the same as `mean_rowwise_mae`, but with the values clipped to [-log10(0.01), log10(0.01)].
- name: mean_rowwise_mae_clipped_0001
label: Mean Rowwise MAE clipped at 0.0001
summary: The mean of the absolute error (MAE) of each row in the matrix. The values are clipped to 0.0001 adjusted p-values.
description: This metric is the same as `mean_rowwise_mae`, but with the values clipped to [-log10(0.0001), log10(0.0001)].
repository_url: null
documentation_url: null
min: 0
Expand Down
37 changes: 12 additions & 25 deletions src/task/metrics/mean_rowwise_error/script.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,51 +21,38 @@
prediction = prediction[genes]

print("Clipping values", flush=True)
threshold_05 = -np.log10(0.05)
de_test_X_clipped_05 = np.clip(de_test_X, -threshold_05, threshold_05)
prediction_clipped_05 = np.clip(prediction.values, -threshold_05, threshold_05)

threshold_01 = -np.log10(0.01)
de_test_X_clipped_01 = np.clip(de_test_X, -threshold_01, threshold_01)
prediction_clipped_01 = np.clip(prediction.values, -threshold_01, threshold_01)
threshold_0001 = -np.log10(0.0001)
de_test_X_clipped_0001 = np.clip(de_test_X, -threshold_0001, threshold_0001)
prediction_clipped_0001 = np.clip(prediction.values, -threshold_0001, threshold_0001)

print("Calculate mean rowwise RMSE", flush=True)
mean_rowwise_rmse = 0
mean_rowwise_rmse_clipped_05 = 0
mean_rowwise_rmse_clipped_01 = 0
mean_rowwise_rmse_clipped_0001 = 0
mean_rowwise_mae = 0
mean_rowwise_mae_clipped_05 = 0
mean_rowwise_mae_clipped_01 = 0
mean_rowwise_mae_clipped_0001 = 0
for i in range(de_test_X.shape[0]):
diff = de_test_X[i,] - prediction.iloc[i]
diff_clipped_05 = de_test_X_clipped_05[i,] - prediction_clipped_05[i]
diff_clipped_01 = de_test_X_clipped_01[i,] - prediction_clipped_01[i]
diff_clipped_0001 = de_test_X_clipped_0001[i,] - prediction_clipped_0001[i]

mean_rowwise_rmse += np.sqrt((diff**2).mean())
mean_rowwise_rmse_clipped_05 += np.sqrt((diff_clipped_05**2).mean())
mean_rowwise_rmse_clipped_01 += np.sqrt((diff_clipped_01**2).mean())
mean_rowwise_rmse_clipped_0001 += np.sqrt((diff_clipped_0001 ** 2).mean())
mean_rowwise_mae += np.abs(diff).mean()
mean_rowwise_mae_clipped_05 += np.abs(diff_clipped_05).mean()
mean_rowwise_mae_clipped_01 += np.abs(diff_clipped_01).mean()
mean_rowwise_mae_clipped_0001 += np.abs(diff_clipped_0001).mean()

mean_rowwise_rmse /= de_test.shape[0]
mean_rowwise_rmse_clipped_05 /= de_test.shape[0]
mean_rowwise_rmse_clipped_01 /= de_test.shape[0]
mean_rowwise_rmse_clipped_0001 /= de_test.shape[0]
mean_rowwise_mae /= de_test.shape[0]
mean_rowwise_mae_clipped_05 /= de_test.shape[0]
mean_rowwise_mae_clipped_01 /= de_test.shape[0]
mean_rowwise_mae_clipped_0001 /= de_test.shape[0]

print("Create output", flush=True)
output = ad.AnnData(
uns={
"dataset_id": de_test.uns["dataset_id"],
"method_id": par["method_id"],
"metric_ids": ["mean_rowwise_rmse", "mean_rowwise_mae",
"mean_rowwise_rmse_clipped_05", "mean_rowwise_mae_clipped_05",
"mean_rowwise_rmse_clipped_01", "mean_rowwise_mae_clipped_01"],
"mean_rowwise_rmse_clipped_0001", "mean_rowwise_mae_clipped_0001"],
"metric_values": [mean_rowwise_rmse, mean_rowwise_mae,
mean_rowwise_rmse_clipped_05, mean_rowwise_mae_clipped_05,
mean_rowwise_rmse_clipped_01, mean_rowwise_mae_clipped_01]
mean_rowwise_rmse_clipped_0001, mean_rowwise_mae_clipped_0001]
}
)

Expand Down