Skip to content

Commit

Permalink
[Fix] BaseModel & BaseDataPreprocessor to method to be consistent w…
Browse files Browse the repository at this point in the history
…ith torch.nn.Module (#783)

* fix BaseModel `to` method to be consistent with torch.nn.Module

* fix data_preprocessor as well

* fix docstring alignment

* fix docstring alignment
  • Loading branch information
C1rN09 authored Dec 5, 2022
1 parent 0dd0a22 commit bd67913
Show file tree
Hide file tree
Showing 3 changed files with 55 additions and 21 deletions.
20 changes: 7 additions & 13 deletions mmengine/model/base_model/base_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,9 +155,9 @@ def parse_losses(
Returns:
tuple[Tensor, dict]: There are two elements. The first is the
loss tensor passed to optim_wrapper which may be a weighted sum of
all losses, and the second is log_vars which will be sent to the
logger.
loss tensor passed to optim_wrapper which may be a weighted sum
of all losses, and the second is log_vars which will be sent to
the logger.
"""
log_vars = []
for loss_name, loss_value in losses.items():
Expand All @@ -177,23 +177,17 @@ def parse_losses(

return loss, log_vars # type: ignore

def to(self,
device: Optional[Union[int, str, torch.device]] = None,
*args,
**kwargs) -> nn.Module:
def to(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to call :meth:`BaseDataPreprocessor.to`
additionally.
Args:
device (int, str or torch.device, optional): the desired device
of the parameters and buffers in this module.
Returns:
nn.Module: The model itself.
"""
device = torch._C._nn._parse_to(*args, **kwargs)[0]
if device is not None:
self._set_device(torch.device(device))
return super().to(device)
return super().to(*args, **kwargs)

def cuda(
self,
Expand Down Expand Up @@ -244,7 +238,7 @@ def _set_device(self, device: torch.device) -> None:
Args:
device (torch.device): the desired device of the parameters and
buffers in this module.
buffers in this module.
"""

def apply_fn(module):
Expand Down
13 changes: 5 additions & 8 deletions mmengine/model/base_model/data_preprocessor.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,19 +84,16 @@ def forward(self, data: dict, training: bool = False) -> Union[dict, list]:
def device(self):
return self._device

def to(self, device: Optional[Union[int, torch.device]], *args,
**kwargs) -> nn.Module:
def to(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Args:
device (int or torch.device, optional): The desired device of the
parameters and buffers in this module.
Returns:
nn.Module: The model itself.
"""
self._device = torch.device(device)
return super().to(device)
device = torch._C._nn._parse_to(*args, **kwargs)[0]
if device is not None:
self._device = torch.device(device)
return super().to(*args, **kwargs)

def cuda(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Expand Down
43 changes: 43 additions & 0 deletions tests/test_model/test_base_model/test_base_model.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,30 @@
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import unittest
from unittest import TestCase

import torch
import torch.nn as nn
from parameterized import parameterized
from torch.optim import SGD

from mmengine.model import BaseDataPreprocessor, BaseModel
from mmengine.optim import OptimWrapper
from mmengine.registry import MODELS
from mmengine.testing import assert_allclose

dtypes_to_test = [torch.float16, torch.float32, torch.float64, torch.half]

cpu_devices = ['cpu', torch.device('cpu')]
cuda_devices = ['cuda', 0, torch.device('cuda')]
devices_to_test = cpu_devices
if torch.cuda.is_available():
devices_to_test += cuda_devices


def list_product(*args):
return list(itertools.product(*args))


@MODELS.register_module()
class CustomDataPreprocessor(BaseDataPreprocessor):
Expand Down Expand Up @@ -158,3 +172,32 @@ def test_to(self):
self.assertEqual(model.data_preprocessor._device, torch.device('cuda'))
self.assertEqual(model.toy_model.data_preprocessor._device,
torch.device('cuda'))

@parameterized.expand(list_product(devices_to_test))
def test_to_device(self, device):
model = ToyModel().to(device)
self.assertTrue(
all(p.device.type == torch.device(device).type
for p in model.parameters())
and model.data_preprocessor._device == torch.device(device))

@parameterized.expand(list_product(dtypes_to_test))
def test_to_dtype(self, dtype):
model = ToyModel().to(dtype)
self.assertTrue(all(p.dtype == dtype for p in model.parameters()))

@parameterized.expand(
list_product(devices_to_test, dtypes_to_test,
['args', 'kwargs', 'hybrid']))
def test_to_device_and_dtype(self, device, dtype, mode):
if mode == 'args':
model = ToyModel().to(device, dtype)
elif mode == 'kwargs':
model = ToyModel().to(device=device, dtype=dtype)
elif mode == 'hybrid':
model = ToyModel().to(device, dtype=dtype)
self.assertTrue(
all(p.dtype == dtype for p in model.parameters())
and model.data_preprocessor._device == torch.device(device)
and all(p.device.type == torch.device(device).type
for p in model.parameters()))

0 comments on commit bd67913

Please sign in to comment.