Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a Vector Database Service to allow stages to read and write to VDBs #1225

Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
5d7b3cb
Added milvus vdb prototype impl
bsuryadevara Sep 26, 2023
4807f3d
Added milvus vdb prototype impl
bsuryadevara Sep 26, 2023
b1f94fb
Added llamaindex and langchain prototypes
bsuryadevara Sep 27, 2023
d912645
doc updates
bsuryadevara Sep 27, 2023
4ecd37f
updates to milvus vd service
bsuryadevara Sep 30, 2023
c18125a
updated search and upsert functions
bsuryadevara Oct 2, 2023
a6ef60e
Added write_to_vector_db stage
bsuryadevara Oct 3, 2023
7389542
Added tests to get started
bsuryadevara Oct 3, 2023
3a31cee
Added tests to get started
bsuryadevara Oct 3, 2023
4cfba55
Added MilvusClient extension class to support missing functions
bsuryadevara Oct 4, 2023
b83f517
Added tests for Milvus vector database serivce
bsuryadevara Oct 4, 2023
b7fee57
Added tests for Milvus vector database service
bsuryadevara Oct 4, 2023
cde18b2
Added tests for Milvus vector database service
bsuryadevara Oct 4, 2023
c9316c0
Added milvus lite to pipeline tests
bsuryadevara Oct 9, 2023
36f1f18
Added tests with milvus lite
bsuryadevara Oct 11, 2023
2f24cc2
Updated Milvus VDB tests
bsuryadevara Oct 11, 2023
9670c97
Merge remote-tracking branch 'upstream/branch-23.11' into 1177-fea-ad…
bsuryadevara Oct 11, 2023
e4b8a02
Updated Milvus VDB tests
bsuryadevara Oct 11, 2023
a5e742e
Added tests with milvus lite
bsuryadevara Oct 11, 2023
3d0e01b
Renamed a file
bsuryadevara Oct 11, 2023
cd52a5f
Feedback changes
bsuryadevara Oct 12, 2023
5ce3402
Feedback changes
bsuryadevara Oct 12, 2023
9e6989a
Removed register stage decorator
bsuryadevara Oct 12, 2023
cf327b5
Ignore pymilvus in the docs
bsuryadevara Oct 13, 2023
a6a6f43
Update variable names
bsuryadevara Oct 13, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docker/conda/environments/cuda11.8_dev.yml
Original file line number Diff line number Diff line change
Expand Up @@ -108,3 +108,6 @@ dependencies:
- pip:
# Add additional dev dependencies here
- pytest-kafka==0.6.0
- pymilvus==2.3.1
- llama-index==0.8.21
- llama-cpp-python
66 changes: 66 additions & 0 deletions morpheus/controllers/milvus_langchain_controller.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# SPDX-FileCopyrightText: Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing

import pandas as pd
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings.huggingface import OpenAIEmbeddings
from langchain.embeddings.openai import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Milvus


class MilvusLangChainController:
"""
"""

def __init__(self, host: str, port: str, **kwargs: typing.Any):
self._host = host
self._port = port
self._kwargs = kwargs
self._embeddings_map = {"openai": OpenAIEmbeddings, "huggingface": HuggingFaceEmbeddings}

def transform(self, df: pd.DataFrame, document_column: str, **kwargs: typing.Any):
"""
"""
loader = DataFrameLoader(data_frame=df, page_content_column=document_column)
documents = loader.load()

if "split" in kwargs:
chunk_size = kwargs.get("chunk_size", 1024)
chunk_overlap = kwargs.get("chunk_overlap", 0)
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)

return documents

def store(self, documents: list, **kwargs: typing.Any):
"""
"""
embedding = kwargs.get("embedding", "openai")
embeddings = self._embeddings_map[embedding](**kwargs)
vector_store = Milvus.from_documents(documents,
embedding=embeddings,
connection_args={
"host": self._host, "port": self._port
})
return vector_store

def query(self, query: str, vector_store: typing.Any, **kwargs: typing.Any):
"""
"""
response = vector_store.similarity_search(query, **kwargs)
return response
54 changes: 54 additions & 0 deletions morpheus/controllers/milvus_llamaindex_controller.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# SPDX-FileCopyrightText: Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing

import pandas as pd
from llama_index import Document
from llama_index import StorageContext
from llama_index import VectorStoreIndex
from llama_index.vector_stores import MilvusVectorStore


class MilvusLlamaIndexController:
bsuryadevara marked this conversation as resolved.
Show resolved Hide resolved
"""
"""

def __init__(self, host: str, port: str, collection_name: str, **kwargs: typing.Any):
self.milvus_vector_store = MilvusVectorStore(host=host, port=port, collection_name=collection_name, **kwargs)

def transform(self, df: pd.DataFrame, document_column: str, **kwargs: typing.Any):
"""
"""
documents = []
for idx, row in df.iterrows():
document_text = row[document_column]
document = Document(text=document_text, node_id=str(idx))
documents.append(document)
return documents

def store(self, documents: list):
"""
"""
storage_context = StorageContext.from_defaults(vector_store=self.milvus_vector_store)
vector_store = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
return vector_store

def query(self, query: str, vector_store: typing.Any, **kwargs: typing.Any):
"""
"""
query_engine = vector_store.as_query_engine()
response = query_engine.query(query, **kwargs)
return response
185 changes: 185 additions & 0 deletions morpheus/controllers/milvus_vector_db_controller.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
# Copyright (c) 2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import typing

import pandas as pd
from pymilvus import BulkInsertState
from pymilvus import Collection
from pymilvus import CollectionSchema
from pymilvus import DataType
from pymilvus import FieldSchema
from pymilvus import connections
from pymilvus import utility
bsuryadevara marked this conversation as resolved.
Show resolved Hide resolved

from morpheus.controllers.vector_db_controller import VectorDBController
from morpheus.utils.vector_db_utils import MILVUS_DATA_TYPE_MAP
from morpheus.utils.vector_db_utils import with_mutex

logger = logging.getLogger(__name__)


class MilvusVectorDBController(VectorDBController):
"""
"""

def __init__(self, host: str, port: str, alias: str = "default", **kwargs):
self._alias = alias
connections.connect(host=host, port=port, alias=self._alias, **kwargs)

def transform(self, data: typing.Any, **kwargs):
return data

def has_store_object(self, name) -> bool:
return utility.has_collection(name)

def list_store_objects(self) -> list[str]:
return utility.list_collections()

def _create_index(self, collection, field_name, index_params) -> None:
collection.create_index(field_name=field_name, index_params=index_params)

def _create_schema_field(self, field_conf: dict):
dtype = MILVUS_DATA_TYPE_MAP[field_conf["dtype"].lower()]
dim = field_conf.get("dim", None)

if (dtype == DataType.BINARY_VECTOR or dtype == DataType.FLOAT_VECTOR):
if not dim:
raise ValueError(f"Dimensions for {dtype} should not be None")
if not isinstance(dim, int):
raise ValueError(f"Dimensions for {dtype} should be an integer")

field_schema = FieldSchema(name=field_conf["name"],
dtype=dtype,
description=field_conf.get("description", ""),
is_primary=field_conf["is_primary"],
dim=dim)
return field_schema

@with_mutex("_mutex")
def create(self, name, **kwargs):
collection_conf = kwargs.get("collection_conf")
index_conf = collection_conf.get("index_conf", None)
partition_conf = collection_conf.get("partition_conf", None)

schema_conf = collection_conf.get("schema_conf")
schema_fields_conf = schema_conf.get("schema_fields")

if not self.has_store_object(name):

if len(schema_fields_conf) == 0:
raise ValueError("Cannot create collection as provided empty schema_fields configuration")

schema_fields = [self._create_schema_field(field_conf=field_conf) for field_conf in schema_fields_conf]

schema = CollectionSchema(fields=schema_fields,
auto_id=schema_conf.get("auto_id", False),
description=schema_conf.get("description", ""))

collection = Collection(name=name,
schema=schema,
using=self._alias,
shards_num=collection_conf.get("shards", 2),
consistency_level=collection_conf.get("consistency_level", "Strong"))

if partition_conf:
# Iterate over each partition configuration
for part in partition_conf:
collection.create_partition(part["name"], description=part.get("description", ""))
if index_conf:
self._create_index(collection=collection,
field_name=index_conf["field_name"],
index_params=index_conf["index_params"])

@with_mutex("_mutex")
def insert(self, name, data, **kwargs):

collection_conf = kwargs.get("collection_conf", {})
partition_name = collection_conf.get("partition_name", "_default")

# TODO (Bhargav): Load input data from a file
if isinstance(data, list):
if not self.has_store_object(name):
raise ValueError(f"Collection {name} doesn't exist.")
collection = Collection(name=name)
collection.insert(data, partition_name=partition_name)
collection.flush()

elif isinstance(data, pd.DataFrame):

index_conf = collection_conf.get("index_conf", None)
params = collection_conf.get("params", {})

collection, ins_res = Collection.construct_from_dataframe(
name,
data,
primary_field=collection_conf["primary_field"],
auto_id=collection_conf.get("auto_id", False),
description=collection_conf.get("description", ""),
partition_name=partition_name,
**params
)

if index_conf:
self._create_index(collection=collection,
field_name=index_conf["field_name"],
index_params=index_conf["index_params"])

collection.flush()
else:
raise ValueError("Unsupported data type for insertion.")

@with_mutex("_mutex")
bsuryadevara marked this conversation as resolved.
Show resolved Hide resolved
def search(self, name, query=None, **kwargs):
is_partition_load = kwargs.get("is_partition_load", False)

collection = Collection(name=name)

try:
if is_partition_load:
partitions = kwargs.get("partitions")
collection.load(partitions)
else:
collection.load()

if query:
result = collection.query(expr=query, **kwargs)
else:
result = collection.search(**kwargs)

return result

except Exception as exec_info:
raise RuntimeError(f"Error while performing search: {exec_info}") from exec_info
finally:
collection.release()

@with_mutex("_mutex")
def drop(self, name, **kwargs):

type = kwargs.get("type", "collection")

collection = Collection(name=name)
if type == "index":
collection.drop_index()
elif type == "partition":
partition_name = kwargs["partition_name"]
collection.drop_partition(partition_name)
else:
collection.drop()

@with_mutex("_mutex")
def close(self):
connections.remove_connection(alias=self._alias)
Loading
Loading