Skip to content

ENH: Subclass RobustTemplate from FSCommandOpenMP #2130

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 28, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 53 additions & 38 deletions nipype/interfaces/freesurfer/longitudinal.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,55 +13,66 @@
from __future__ import print_function, division, unicode_literals, absolute_import

import os
#import itertools

from ... import logging
from ..base import (TraitedSpec, File, traits,
InputMultiPath, OutputMultiPath, isdefined)
from .base import FSCommand, FSTraitedSpec
from .base import (FSCommand, FSTraitedSpec, FSCommandOpenMP,
FSTraitedSpecOpenMP)

__docformat__ = 'restructuredtext'
iflogger = logging.getLogger('interface')


class RobustTemplateInputSpec(FSTraitedSpec):
class RobustTemplateInputSpec(FSTraitedSpecOpenMP):
# required
in_files = InputMultiPath(File(exists=True), mandatory=True, argstr='--mov %s',
desc='input movable volumes to be aligned to common mean/median template')
in_files = InputMultiPath(
File(exists=True), mandatory=True, argstr='--mov %s',
desc='input movable volumes to be aligned to common mean/median '
'template')
out_file = File('mri_robust_template_out.mgz', mandatory=True,
usedefault=True, argstr='--template %s',
desc='output template volume (final mean/median image)')
auto_detect_sensitivity = traits.Bool(argstr='--satit', xor=['outlier_sensitivity'], mandatory=True,
desc='auto-detect good sensitivity (recommended for head or full brain scans)')
outlier_sensitivity = traits.Float(argstr='--sat %.4f', xor=['auto_detect_sensitivity'], mandatory=True,
desc='set outlier sensitivity manually (e.g. "--sat 4.685" ). Higher values mean ' +
'less sensitivity.')
auto_detect_sensitivity = traits.Bool(
argstr='--satit', xor=['outlier_sensitivity'], mandatory=True,
desc='auto-detect good sensitivity (recommended for head or full '
'brain scans)')
outlier_sensitivity = traits.Float(
argstr='--sat %.4f', xor=['auto_detect_sensitivity'], mandatory=True,
desc='set outlier sensitivity manually (e.g. "--sat 4.685" ). Higher '
'values mean less sensitivity.')
# optional
transform_outputs = InputMultiPath(File(exists=False),
argstr='--lta %s',
desc='output xforms to template (for each input)')
intensity_scaling = traits.Bool(default_value=False,
argstr='--iscale',
desc='allow also intensity scaling (default off)')
scaled_intensity_outputs = InputMultiPath(File(exists=False),
argstr='--iscaleout %s',
desc='final intensity scales (will activate --iscale)')
subsample_threshold = traits.Int(argstr='--subsample %d',
desc='subsample if dim > # on all axes (default no subs.)')
average_metric = traits.Enum('median', 'mean', argstr='--average %d',
desc='construct template from: 0 Mean, 1 Median (default)')
initial_timepoint = traits.Int(argstr='--inittp %d',
desc='use TP# for spacial init (default random), 0: no init')
fixed_timepoint = traits.Bool(default_value=False, argstr='--fixtp',
desc='map everthing to init TP# (init TP is not resampled)')
no_iteration = traits.Bool(default_value=False, argstr='--noit',
desc='do not iterate, just create first template')
initial_transforms = InputMultiPath(File(exists=True),
argstr='--ixforms %s',
desc='use initial transforms (lta) on source')
in_intensity_scales = InputMultiPath(File(exists=True),
argstr='--iscalein %s',
desc='use initial intensity scales')
transform_outputs = InputMultiPath(
File(exists=False), argstr='--lta %s',
desc='output xforms to template (for each input)')
intensity_scaling = traits.Bool(
default_value=False, argstr='--iscale',
desc='allow also intensity scaling (default off)')
scaled_intensity_outputs = InputMultiPath(
File(exists=False), argstr='--iscaleout %s',
desc='final intensity scales (will activate --iscale)')
subsample_threshold = traits.Int(
argstr='--subsample %d',
desc='subsample if dim > # on all axes (default no subs.)')
average_metric = traits.Enum(
'median', 'mean', argstr='--average %d',
desc='construct template from: 0 Mean, 1 Median (default)')
initial_timepoint = traits.Int(
argstr='--inittp %d',
desc='use TP# for spacial init (default random), 0: no init')
fixed_timepoint = traits.Bool(
default_value=False, argstr='--fixtp',
desc='map everthing to init TP# (init TP is not resampled)')
no_iteration = traits.Bool(
default_value=False, argstr='--noit',
desc='do not iterate, just create first template')
initial_transforms = InputMultiPath(
File(exists=True), argstr='--ixforms %s',
desc='use initial transforms (lta) on source')
in_intensity_scales = InputMultiPath(
File(exists=True), argstr='--iscalein %s',
desc='use initial intensity scales')


class RobustTemplateOutputSpec(TraitedSpec):
out_file = File(
Expand All @@ -72,7 +83,7 @@ class RobustTemplateOutputSpec(TraitedSpec):
File(exists=True), desc="output final intensity scales")


class RobustTemplate(FSCommand):
class RobustTemplate(FSCommandOpenMP):
""" construct an unbiased robust template for longitudinal volumes

Examples
Expand All @@ -92,8 +103,10 @@ class RobustTemplate(FSCommand):
>>> template.cmdline #doctest: +NORMALIZE_WHITESPACE +ALLOW_UNICODE
'mri_robust_template --satit --average 0 --fixtp --mov structural.nii functional.nii --inittp 1 --noit --template T1.nii --subsample 200'

>>> template.inputs.transform_outputs = ['structural.lta', 'functional.lta']
>>> template.inputs.scaled_intensity_outputs = ['structural-iscale.txt', 'functional-iscale.txt']
>>> template.inputs.transform_outputs = ['structural.lta',
... 'functional.lta']
>>> template.inputs.scaled_intensity_outputs = ['structural-iscale.txt',
... 'functional-iscale.txt']
>>> template.cmdline #doctest: +NORMALIZE_WHITESPACE +ALLOW_UNICODE
'mri_robust_template --satit --average 0 --fixtp --mov structural.nii functional.nii --inittp 1 --noit --template T1.nii --iscaleout structural-iscale.txt functional-iscale.txt --subsample 200 --lta structural.lta functional.lta'

Expand Down Expand Up @@ -151,9 +164,11 @@ class FuseSegmentationsInputSpec(FSTraitedSpec):
must include the corresponding norm file for all given timepoints \
as well as for the current subject")


class FuseSegmentationsOutputSpec(TraitedSpec):
out_file = File(exists=False, desc="output fused segmentation file")


class FuseSegmentations(FSCommand):

""" fuse segmentations together from multiple timepoints
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ def test_RobustTemplate_inputs():
),
no_iteration=dict(argstr='--noit',
),
num_threads=dict(),
out_file=dict(argstr='--template %s',
mandatory=True,
usedefault=True,
Expand Down