Skip to content

add completion function #5

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 80 additions & 3 deletions src/gemma_binding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ namespace gcpp

while (abs_pos < args.max_tokens)
{
std::string prompt_string;
std::string prompt_string;
std::vector<int> prompt;
current_pos = 0;
{
Expand Down Expand Up @@ -255,6 +255,58 @@ namespace gcpp
{ return true; });
}

std::string decode(gcpp::Gemma &model, hwy::ThreadPool &pool,
hwy::ThreadPool &inner_pool, const InferenceArgs &args,
int verbosity, const gcpp::AcceptFunc &accept_token, std::string &prompt_string)
{
std::string generated_text;
// Seed the random number generator
std::random_device rd;
std::mt19937 gen(rd());
int prompt_size{};
if (model.model_training == ModelTraining::GEMMA_IT)
{
// For instruction-tuned models: add control tokens.
prompt_string = "<start_of_turn>user\n" + prompt_string +
"<end_of_turn>\n<start_of_turn>model\n";
}
// Encode the prompt string into tokens
std::vector<int> prompt;
HWY_ASSERT(model.Tokenizer().Encode(prompt_string, &prompt).ok());
// Placeholder for generated token IDs
std::vector<int> generated_tokens;
// Define lambda for token decoding
StreamFunc stream_token = [&generated_tokens](int token, float /* probability */) -> bool {
generated_tokens.push_back(token);
return true; // Continue generating
};
// Decode tokens
prompt_size = prompt.size();
GenerateGemma(model, args, prompt, /*start_pos=*/0, pool, inner_pool, stream_token, accept_token, gen, verbosity);
HWY_ASSERT(model.Tokenizer().Decode(generated_tokens, &generated_text).ok());
generated_text = generated_text.substr(prompt_string.size());

return generated_text;
}

std::string completion(LoaderArgs &loader, InferenceArgs &inference, AppArgs &app, std::string &prompt_string)
{
hwy::ThreadPool inner_pool(0);
hwy::ThreadPool pool(app.num_threads);
if (app.num_threads > 10)
{
PinThreadToCore(app.num_threads - 1); // Main thread

pool.Run(0, pool.NumThreads(),
[](uint64_t /*task*/, size_t thread)
{ PinThreadToCore(thread); });
}
gcpp::Gemma model(loader, pool);
return decode(model, pool, inner_pool, inference, app.verbosity, /*accept_token=*/[](int)
{ return true; }, prompt_string);

}

} // namespace gcpp

void chat_base(int argc, char **argv)
Expand Down Expand Up @@ -283,7 +335,30 @@ void chat_base(int argc, char **argv)
PROFILER_PRINT_RESULTS(); // Must call outside the zone above.
// return 1;
}
std::string completion_base(int argc, char **argv)
{
gcpp::LoaderArgs loader(argc, argv);
gcpp::InferenceArgs inference(argc, argv);
gcpp::AppArgs app(argc, argv);
std::string prompt_string = argv[argc-1];
return gcpp::completion(loader, inference, app, prompt_string);
}
std::string completion_base_wrapper(const std::vector<std::string> &args,std::string &prompt_string)
{
int argc = args.size() + 2; // +1 for the program name
std::vector<char *> argv_vec;
argv_vec.reserve(argc);

argv_vec.push_back(const_cast<char *>("pygemma"));

for (const auto &arg : args)
{
argv_vec.push_back(const_cast<char *>(arg.c_str()));
}
argv_vec.push_back(const_cast<char *>(prompt_string.c_str()));
char **argv = argv_vec.data();
return completion_base(argc, argv);
}
void show_help_wrapper()
{
// Assuming ShowHelp does not critically depend on argv content
Expand All @@ -294,12 +369,11 @@ void show_help_wrapper()
ShowHelp(loader, inference, app);
}

void chat_base_wrapper(const std::vector<std::string> &args)
std::string chat_base_wrapper(const std::vector<std::string> &args)
{
int argc = args.size() + 1; // +1 for the program name
std::vector<char *> argv_vec;
argv_vec.reserve(argc);

argv_vec.push_back(const_cast<char *>("pygemma"));

for (const auto &arg : args)
Expand All @@ -308,12 +382,15 @@ void chat_base_wrapper(const std::vector<std::string> &args)
}

char **argv = argv_vec.data();

chat_base(argc, argv);
}


PYBIND11_MODULE(pygemma, m)
{
m.doc() = "Pybind11 integration for chat_base function";
m.def("chat_base", &chat_base_wrapper, "A wrapper for the chat_base function accepting Python list of strings as arguments");
m.def("show_help", &show_help_wrapper, "A wrapper for show_help function");
m.def("completion", &completion_base_wrapper, "A wrapper for inference function");
}
44 changes: 29 additions & 15 deletions tests/test_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,25 +18,39 @@ def main():
parser.add_argument(
"--model", type=str, required=True, help="Model type identifier."
)

args = parser.parse_args()

# Now using the parsed arguments
pygemma.chat_base(
[
"--tokenizer",
args.tokenizer,
"--compressed_weights",
args.compressed_weights,
"--model",
args.model,
]
parser.add_argument(
"--input", type=str, required=False, help="Input text to chat with the model. If None, Switch to Chat mode.",
default="Hello."
)

# Now using the parsed arguments
args = parser.parse_args()
if args.input is not None:
string = pygemma.completion(
[
"--tokenizer",
args.tokenizer,
"--compressed_weights",
args.compressed_weights,
"--model",
args.model,
], args.input
)
print(string)
else:
return pygemma.chat_base(
[
"--tokenizer",
args.tokenizer,
"--compressed_weights",
args.compressed_weights,
"--model",
args.model,
]
)
# Optionally, show help if needed
# pygemma.show_help()


if __name__ == "__main__":
main()
# python tests/test_chat.py --tokenizer /path/to/tokenizer.spm --compressed_weights /path/to/weights.sbs --model model_identifier
# python tests/test_chat.py --tokenizer ../Model_Weight/tokenizer.spm --compressed_weights ../Model_Weight/2b-it-sfp.sbs --model 2b-it