Skip to content

OnnxToTorch bicubic interpolation #3802

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Nov 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2922,7 +2922,7 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
llvm::SmallVector<Value> operands;
std::string mode, nearest_mode, coordTfMode;
int64_t antialias, exclude_outside;
float extrapolation_value;
float extrapolation_value, cubic_coeff_a;
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());

if (auto attr = binder.op->getAttr("torch.onnx.axes")) {
Expand All @@ -2947,7 +2947,8 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.f32FloatAttr(extrapolation_value, "extrapolation_value",
0.0) ||
binder.customOpNameStringAttr(nearest_mode, "nearest_mode",
"round_prefer_floor"))
"round_prefer_floor") ||
binder.f32FloatAttr(cubic_coeff_a, "cubic_coeff_a", -0.75))
return failure();
if (antialias != 0) {
return rewriter.notifyMatchFailure(
Expand Down Expand Up @@ -2976,6 +2977,11 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
"except asymmetric and half_pixel");
}

if (mode == "cubic" && cubic_coeff_a != -0.75) {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: cubic coeff must be -0.75");
}

unsigned rank = dyn_cast<Torch::ValueTensorType>(operands[0].getType())
.getSizes()
.size();
Expand All @@ -2991,8 +2997,11 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
Value alignCorners =
coordTfMode == "align_corners" ? cstTrue : cstFalse;
if (mode == "cubic") {
return rewriter.notifyMatchFailure(binder.op,
"unimplemented: bicubic mode");
std::string modeStr = "cubic";
if (coordTfMode != "half_pixel")
modeStr = modeStr + "_" + coordTfMode;
modeStrValue =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), modeStr);
}
// supported modes:
// bilinear (half_pixel), bilinear with align_corners,
Expand Down
255 changes: 230 additions & 25 deletions lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2683,7 +2683,7 @@ class ConvertAtenGridSamplerOp : public OpConversionPattern<AtenGridSamplerOp> {
};
} // namespace

static Value NearestInterpolate(OpBuilder &b, Location loc,
static Value nearestInterpolate(OpBuilder &b, Location loc,
SmallVector<Value> outputSizes, Value input,
SmallVector<Value> inputSizes,
SmallVector<Value> scaleValues,
Expand Down Expand Up @@ -2771,12 +2771,12 @@ static Value NearestInterpolate(OpBuilder &b, Location loc,
return retVal;
}

static Value BilinearInterpolate(OpBuilder &b,
Aten__InterpolateSizeListScaleListOp op,
Location loc, SmallVector<Value> outputSizes,
Value input, SmallVector<Value> inputSizes,
SmallVector<Value> scaleValues,
std::string coordStr) {
static SmallVector<Value> coordinateTransform(
OpBuilder &b, Aten__InterpolateSizeListScaleListOp op, Location loc,
SmallVector<Value> outputSizes, Value input, SmallVector<Value> inputSizes,
SmallVector<Value> scaleValues, std::string coordStr, bool alignCornersBool,
SmallVector<Value> indices, bool clip) {

unsigned dimOffset = 2;
auto inputType = cast<RankedTensorType>(input.getType());
auto inputRank = inputType.getRank();
Expand All @@ -2785,15 +2785,7 @@ static Value BilinearInterpolate(OpBuilder &b,
Value cstHalf = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.5));
Value zero = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.0));

bool alignCornersBool;
matchPattern(op.getAlignCorners(), m_TorchConstantBool(&alignCornersBool));

SmallVector<Value> indices;
for (unsigned i = 0; i < inputRank; i++) {
indices.push_back(b.create<linalg::IndexOp>(loc, i));
}

SmallVector<Value> proj, projEps, high, low, highFP, lowFP;
SmallVector<Value> proj;
for (unsigned i = 0; i < inputRank - dimOffset; i++) {
// length_original
Value inputFP =
Expand Down Expand Up @@ -2856,13 +2848,50 @@ static Value BilinearInterpolate(OpBuilder &b,
outputSizeFP, cstOneFloat);
preClip = b.create<arith::SelectOp>(loc, cmp, zero, preClip);
}
// preClip is the fp position inside the input image to extract from.
// clip to [0,inf)
Value max = b.create<arith::MaximumFOp>(loc, preClip, zero);
if (clip) {
// preClip is the fp position inside the input image to extract from.
// clip to [0,inf)
Value max = b.create<arith::MaximumFOp>(loc, preClip, zero);
Value inputSubOne = b.create<arith::SubFOp>(loc, inputFP, cstOneFloat);
// clip to [0,length_original - 1].
// proj is properly within the input image.
proj.push_back(b.create<arith::MinimumFOp>(loc, max, inputSubOne));
} else {
proj.push_back(preClip);
}
}
return proj;
}

static Value bilinearInterpolate(OpBuilder &b,
Aten__InterpolateSizeListScaleListOp op,
Location loc, SmallVector<Value> outputSizes,
Value input, SmallVector<Value> inputSizes,
SmallVector<Value> scaleValues,
std::string coordStr) {
unsigned dimOffset = 2;
auto inputType = cast<RankedTensorType>(input.getType());
auto inputRank = inputType.getRank();

Value cstOneFloat = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(1.0));

bool alignCornersBool;
matchPattern(op.getAlignCorners(), m_TorchConstantBool(&alignCornersBool));

SmallVector<Value> indices;
for (unsigned i = 0; i < inputRank; i++) {
indices.push_back(b.create<linalg::IndexOp>(loc, i));
}

SmallVector<Value> proj, high, low, highFP, lowFP;
proj = coordinateTransform(b, op, loc, outputSizes, input, inputSizes,
scaleValues, coordStr, alignCornersBool, indices,
true);
for (unsigned i = 0; i < inputRank - dimOffset; i++) {
// length_original
Value inputFP =
b.create<arith::SIToFPOp>(loc, b.getF32Type(), inputSizes[i]);
Value inputSubOne = b.create<arith::SubFOp>(loc, inputFP, cstOneFloat);
// clip to [0,length_original - 1].
// proj is properly within the input image.
proj.push_back(b.create<arith::MinimumFOp>(loc, max, inputSubOne));

// for bilinear interpolation, we look for the nearest indices below and
// above proj
Expand Down Expand Up @@ -2926,6 +2955,176 @@ static Value BilinearInterpolate(OpBuilder &b,
return b.create<arith::AddFOp>(loc, left, right);
}

static Value bicubicInterpolate(OpBuilder &b,
Aten__InterpolateSizeListScaleListOp op,
Location loc, SmallVector<Value> outputSizes,
Value input, SmallVector<Value> inputSizes,
SmallVector<Value> scaleValues,
std::string coordStr) {
unsigned dimOffset = 2;
auto inputType = cast<RankedTensorType>(input.getType());
auto inputRank = inputType.getRank();

Value inputFPH =
b.create<arith::SIToFPOp>(loc, b.getF32Type(), inputSizes[0]);
Value inputFPW =
b.create<arith::SIToFPOp>(loc, b.getF32Type(), inputSizes[1]);

Value a = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(-0.75));
Value zero = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.0));
Value cstOneFloat = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(1.0));
Value cstTwoFloat = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(2.0));
Value cstThreeFloat =
b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(3.0));
Value cstFourFloat = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(4.0));
Value cstFiveFloat = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(5.0));
Value cstEightFloat =
b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(8.0));

// (a+2)|x|^3 - (a+3)|x|^2 + 1 for xDistance (|x| <= 1)
auto WeightLessThanEqualOne = [&](Value xDistance) -> Value {
Value xDistanceSquared = b.create<arith::MulFOp>(loc, xDistance, xDistance);
Value xDistanceCubed =
b.create<arith::MulFOp>(loc, xDistanceSquared, xDistance);

Value lessEqualOne = b.create<arith::AddFOp>(loc, a, cstTwoFloat);
lessEqualOne = b.create<arith::MulFOp>(loc, xDistanceCubed, lessEqualOne);
Value aPlusThree = b.create<arith::AddFOp>(loc, a, cstThreeFloat);
aPlusThree = b.create<arith::MulFOp>(loc, xDistanceSquared, aPlusThree);
lessEqualOne = b.create<arith::SubFOp>(loc, lessEqualOne, aPlusThree);
lessEqualOne = b.create<arith::AddFOp>(loc, lessEqualOne, cstOneFloat);

return lessEqualOne;
};

// a|x|^3 - 5a|x|^2 + 8a|x| - 4a for xDistance (1 < |x| < 2)
auto WeightLessThanTwo = [&](Value xDistance) -> Value {
Value xDistanceSquared = b.create<arith::MulFOp>(loc, xDistance, xDistance);
Value xDistanceCubed =
b.create<arith::MulFOp>(loc, xDistanceSquared, xDistance);
// a|x|^3
Value lessThanTwo = b.create<arith::MulFOp>(loc, xDistanceCubed, a);

Value fiveA = b.create<arith::MulFOp>(loc, xDistanceSquared, a);
fiveA = b.create<arith::MulFOp>(loc, fiveA, cstFiveFloat);
// a|x|^3 - 5a|x|^2
lessThanTwo = b.create<arith::SubFOp>(loc, lessThanTwo, fiveA);

Value eightA = b.create<arith::MulFOp>(loc, a, xDistance);
eightA = b.create<arith::MulFOp>(loc, eightA, cstEightFloat);
// a|x|^3 - 5a|x|^2 + 8a|x|
lessThanTwo = b.create<arith::AddFOp>(loc, eightA, lessThanTwo);

Value fourA = b.create<arith::MulFOp>(loc, a, cstFourFloat);
// a|x|^3 - 5a|x|^2 + 8a|x| - 4a
lessThanTwo = b.create<arith::SubFOp>(loc, lessThanTwo, fourA);
return lessThanTwo;
};

bool alignCornersBool;
matchPattern(op.getAlignCorners(), m_TorchConstantBool(&alignCornersBool));

SmallVector<Value> indices;
for (unsigned i = 0; i < inputRank; i++) {
indices.push_back(b.create<linalg::IndexOp>(loc, i));
}

SmallVector<Value> proj;

proj = coordinateTransform(b, op, loc, outputSizes, input, inputSizes,
scaleValues, coordStr, alignCornersBool, indices,
false);

// get the nearest neighbors of proj
Value x1 = b.create<math::CeilOp>(loc, proj[1]);
Value x_1 = b.create<arith::SubFOp>(loc, x1, cstOneFloat);
Value x_2 = b.create<arith::SubFOp>(loc, x_1, cstOneFloat);
Value x2 = b.create<arith::AddFOp>(loc, x1, cstOneFloat);

Value y1 = b.create<math::CeilOp>(loc, proj[0]);
Value y_1 = b.create<arith::SubFOp>(loc, y1, cstOneFloat);
Value y_2 = b.create<arith::SubFOp>(loc, y_1, cstOneFloat);
Value y2 = b.create<arith::AddFOp>(loc, y1, cstOneFloat);

// calculate the distance of nearest neighbors x and y to proj
Value y2Distance = b.create<arith::SubFOp>(loc, proj[0], y2);
y2Distance = b.create<math::AbsFOp>(loc, y2Distance);
Value y1Distance = b.create<arith::SubFOp>(loc, proj[0], y1);
y1Distance = b.create<math::AbsFOp>(loc, y1Distance);
Value y_1Distance = b.create<arith::SubFOp>(loc, proj[0], y_1);
y_1Distance = b.create<math::AbsFOp>(loc, y_1Distance);
Value y_2Distance = b.create<arith::SubFOp>(loc, proj[0], y_2);
y_2Distance = b.create<math::AbsFOp>(loc, y_2Distance);

Value x2Distance = b.create<arith::SubFOp>(loc, proj[1], x2);
x2Distance = b.create<math::AbsFOp>(loc, x2Distance);
Value x1Distance = b.create<arith::SubFOp>(loc, proj[1], x1);
x1Distance = b.create<math::AbsFOp>(loc, x1Distance);
Value x_1Distance = b.create<arith::SubFOp>(loc, proj[1], x_1);
x_1Distance = b.create<math::AbsFOp>(loc, x_1Distance);
Value x_2Distance = b.create<arith::SubFOp>(loc, proj[1], x_2);
x_2Distance = b.create<math::AbsFOp>(loc, x_2Distance);

SmallVector<Value> y{y_2, y_1, y1, y2};
SmallVector<Value> x{x_2, x_1, x1, x2};

SmallVector<Value> wys{
WeightLessThanTwo(y_2Distance), WeightLessThanEqualOne(y_1Distance),
WeightLessThanEqualOne(y1Distance), WeightLessThanTwo(y2Distance)};
SmallVector<Value> wxs{
WeightLessThanTwo(x_2Distance), WeightLessThanEqualOne(x_1Distance),
WeightLessThanEqualOne(x1Distance), WeightLessThanTwo(x2Distance)};

// clip the nearest neighbors points to inside the original image
for (int k = 0; k < 4; k++) {
Value yClipped = b.create<arith::MaximumFOp>(loc, y[k], zero);
Value inputHSubOne = b.create<arith::SubFOp>(loc, inputFPH, cstOneFloat);
yClipped = b.create<arith::MinimumFOp>(loc, yClipped, inputHSubOne);
Value yInt = b.create<arith::FPToSIOp>(loc, b.getI64Type(), yClipped);
y[k] = b.create<arith::IndexCastOp>(loc, b.getIndexType(), yInt);

Value xClipped = b.create<arith::MaximumFOp>(loc, x[k], zero);
Value inputWSubOne = b.create<arith::SubFOp>(loc, inputFPW, cstOneFloat);
xClipped = b.create<arith::MinimumFOp>(loc, xClipped, inputWSubOne);
Value xInt = b.create<arith::FPToSIOp>(loc, b.getI64Type(), xClipped);
x[k] = b.create<arith::IndexCastOp>(loc, b.getIndexType(), xInt);
}
// 1. Compute x_original and y_original (proj)
// 2. Compute nearest x and y neighbors
// 3. Compute Wx Wy
// 4. Extract inputs at nearest neighbors (inputExtracts)
// 5. Compute weighted sum (yield this)

// 4 nearest x neighbors : [x_2, x_1, x1, x2] of x_original
// 4 nearest y neighbors : [y_2, y_1, y1, y2] of y_original
// Sum_x is over 4 nearest x neighbors (similar for Sum_y)
// f(x_original, y_original) = Sum_y Sum_x W(x_original - x)*input[x,y]
// * W(y_original - y)
Value fxy = zero;

for (int j = 0; j < 4; j++) {
Value wy = wys[j];
Value xInterpy = zero;

indices[dimOffset] = y[j];

for (int i = 0; i < 4; i++) {
Value wx = wxs[i];

indices[dimOffset + 1] = x[i];

Value p = b.create<tensor::ExtractOp>(loc, input, indices);

Value wxp = b.create<arith::MulFOp>(loc, wx, p);
xInterpy = b.create<arith::AddFOp>(loc, xInterpy, wxp);
}
Value wyXInterpy = b.create<arith::MulFOp>(loc, wy, xInterpy);
fxy = b.create<arith::AddFOp>(loc, fxy, wyXInterpy);
}

return fxy;
}

namespace {
class ConvertInterpolateOp
: public OpConversionPattern<Aten__InterpolateSizeListScaleListOp> {
Expand All @@ -2941,7 +3140,8 @@ class ConvertInterpolateOp
// coordinate_transformation_mode="asymmetric" will lower to an interpolate
// op with the non-standard mode="bilinear_asymmetric".
matchPattern(op.getMode(), m_TorchConstantStr(mode));
if (mode.substr(0, 8) != "bilinear" && mode.substr(0, 7) != "nearest") {
if (mode.substr(0, 8) != "bilinear" && mode.substr(0, 7) != "nearest" &&
mode.substr(0, 5) != "cubic") {
return failure();
}

Expand Down Expand Up @@ -3023,13 +3223,18 @@ class ConvertInterpolateOp
(mode.find(",") == std::string::npos)
? ""
: mode.substr(mode.find(",") + 1);
retVal = NearestInterpolate(
retVal = nearestInterpolate(
b, loc, outputSizeIntValues, input, inputSizes,
ScaleFactorFloatValues, coordTfMode, nearestMode);
} else if (mode.substr(0, 8) == "bilinear") {
retVal = BilinearInterpolate(
retVal = bilinearInterpolate(
b, op, loc, outputSizeIntValues, input, inputSizes,
ScaleFactorFloatValues, mode.substr(8));
} else if (mode.substr(0, 5) == "cubic") {

retVal = bicubicInterpolate(
b, op, loc, outputSizeIntValues, input, inputSizes,
ScaleFactorFloatValues, mode.substr(5));
}
b.create<linalg::YieldOp>(loc, retVal);
})
Expand Down
Loading
Loading