Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onnx] Add IDF and TFIDF modes to TFIDF Vectorizer #3726

Merged
merged 2 commits into from
Oct 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions include/torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h
Original file line number Diff line number Diff line change
Expand Up @@ -338,6 +338,31 @@ struct OpBinder {
return failure();
}

ParseResult f32FloatArrayAttr(llvm::SmallVector<float> &values,
StringRef nameSuffix,
ArrayRef<float> defaults) {
SmallString<64> name("torch.onnx.");
name.append(nameSuffix);
auto attr = op->getAttr(name);
if (!attr) {
values.append(defaults.begin(), defaults.end());
return success();
}
if (auto arrayAttr = dyn_cast<ArrayAttr>(attr)) {
for (auto element : arrayAttr) {
auto floatAttr = dyn_cast<FloatAttr>(element);
if (!floatAttr)
return failure();
FloatType t = cast<FloatType>(floatAttr.getType());
if (t.getWidth() != 32)
return failure();
values.push_back(floatAttr.getValue().convertToFloat());
}
return success();
}
return failure();
}

ParseResult stringArrayAttr(llvm::SmallVector<std::string> &values,
StringRef nameSuffix) {
SmallString<64> name("torch.onnx.");
Expand Down
37 changes: 33 additions & 4 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4339,6 +4339,7 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
llvm::SmallVector<int64_t> ngram_counts;
llvm::SmallVector<int64_t> ngram_indexes;
llvm::SmallVector<int64_t> pool_int64s;
llvm::SmallVector<float> weights;
std::string mode;
int64_t min_gram_length;
int64_t max_gram_length;
Expand All @@ -4356,9 +4357,10 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.tensorOperand(input) || binder.tensorResultType(resultType))
return failure();

if (mode != "TF")
return rewriter.notifyMatchFailure(binder.op,
"TF mode supported only");
llvm::SmallVector<float> defaultWeights(ngram_indexes.size(), 1.0f);
if (binder.f32FloatArrayAttr(weights, "weights", defaultWeights))
return failure();

if (pool_int64s.size() == 0)
return rewriter.notifyMatchFailure(
binder.op, "pool_int64s empty, only integers supported");
Expand Down Expand Up @@ -4584,9 +4586,36 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.getLoc(), loopConditionTrue, ValueRange({count}));
}
count = skipLoop.getResult(0);
// insert count "tf" into output
Value countFloat = rewriter.create<Torch::AtenFloatScalarOp>(
binder.getLoc(), count);
if (mode == "IDF" || mode == "TFIDF") {
// both IDF and TFIDF modes use weights
float weight = weights[ngram_i];
Value constWeight = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(weight));

// TFIDF
Value multiplier = countFloat;
if (mode == "IDF") {
// All the counts larger than 1 would be truncated to 1
// and the i-th element in weights would be used to scale
// (by multiplication) the count of the i-th n-gram in pool.

Value intCount = rewriter.create<Torch::AtenIntScalarOp>(
binder.getLoc(), count);
// compare intCount > 0
Value gtZeroCount = rewriter.create<Torch::AtenGtIntOp>(
binder.getLoc(), intCount, zero);
gtZeroCount = rewriter.create<Torch::AtenIntBoolOp>(
binder.getLoc(), gtZeroCount);
Value gtZeroCountFloat =
rewriter.create<Torch::AtenFloatScalarOp>(binder.getLoc(),
gtZeroCount);
multiplier = gtZeroCountFloat;
}
countFloat = rewriter.create<Torch::AtenMulFloatOp>(
binder.getLoc(), multiplier, constWeight);
}
Value dataList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
Expand Down
Loading