Skip to content

[libc][math] Implement double precision asin correctly rounded for all rounding modes. #134401

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Apr 25, 2025
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions libc/config/darwin/arm/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
1 change: 1 addition & 0 deletions libc/config/linux/aarch64/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -412,6 +412,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
1 change: 1 addition & 0 deletions libc/config/linux/arm/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -244,6 +244,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
1 change: 1 addition & 0 deletions libc/config/linux/riscv/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -398,6 +398,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
1 change: 1 addition & 0 deletions libc/config/linux/x86_64/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -417,6 +417,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
1 change: 1 addition & 0 deletions libc/config/windows/entrypoints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,7 @@ set(TARGET_LIBM_ENTRYPOINTS
# math.h entrypoints
libc.src.math.acosf
libc.src.math.acoshf
libc.src.math.asin
libc.src.math.asinf
libc.src.math.asinhf
libc.src.math.atan2
Expand Down
2 changes: 1 addition & 1 deletion libc/docs/headers/math/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ Higher Math Functions
+-----------+------------------+-----------------+------------------------+----------------------+------------------------+------------------------+----------------------------+
| acospi | | | | | | 7.12.4.8 | F.10.1.8 |
+-----------+------------------+-----------------+------------------------+----------------------+------------------------+------------------------+----------------------------+
| asin | |check| | | | |check| | | 7.12.4.2 | F.10.1.2 |
| asin | |check| | |check| | | | | 7.12.4.2 | F.10.1.2 |
+-----------+------------------+-----------------+------------------------+----------------------+------------------------+------------------------+----------------------------+
| asinh | |check| | | | |check| | | 7.12.5.2 | F.10.2.2 |
+-----------+------------------+-----------------+------------------------+----------------------+------------------------+------------------------+----------------------------+
Expand Down
32 changes: 32 additions & 0 deletions libc/src/math/generic/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4076,6 +4076,38 @@ add_entrypoint_object(
libc.src.__support.macros.properties.types
)

add_header_library(
asin_utils
HDRS
atan_utils.h
DEPENDS
libc.src.__support.integer_literals
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.dyadic_float
libc.src.__support.FPUtil.multiply_add
libc.src.__support.FPUtil.nearest_integer
libc.src.__support.FPUtil.polyeval
libc.src.__support.macros.optimization
)

add_entrypoint_object(
asin
SRCS
asin.cpp
HDRS
../asin.h
DEPENDS
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.dyadic_float
libc.src.__support.FPUtil.fenv_impl
libc.src.__support.FPUtil.fp_bits
libc.src.__support.FPUtil.multiply_add
libc.src.__support.FPUtil.polyeval
libc.src.__support.FPUtil.sqrt
libc.src.__support.macros.optimization
libc.src.__support.macros.properties.cpu_features
)

add_entrypoint_object(
acosf
SRCS
Expand Down
286 changes: 286 additions & 0 deletions libc/src/math/generic/asin.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
//===-- Double-precision asin function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/asin.h"
#include "asin_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA

namespace LIBC_NAMESPACE_DECL {

using DoubleDouble = fputil::DoubleDouble;
using Float128 = fputil::DyadicFloat<128>;

LLVM_LIBC_FUNCTION(double, asin, (double x)) {
using FPBits = fputil::FPBits<double>;

FPBits xbits(x);
int x_exp = xbits.get_biased_exponent();

// |x| < 0.5.
if (x_exp < FPBits::EXP_BIAS - 1) {
// |x| < 2^-26.
if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 26)) {
// When |x| < 2^-26, the relative error of the approximation asin(x) ~ x
// is:
// |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
// = x^2 / 6
// < 2^-54
// < epsilon(1)/2.
// So the correctly rounded values of asin(x) are:
// = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
// or (rounding mode = FE_UPWARD and x is
// negative),
// = x otherwise.
// To simplify the rounding decision and make it more efficient, we use
// fma(x, 2^-54, x) instead.
// Note: to use the formula x + 2^-54*x to decide the correct rounding, we
// do need fma(x, 2^-54, x) to prevent underflow caused by 2^-54*x when
// |x| < 2^-1022. For targets without FMA instructions, when x is close to
// denormal range, we normalize x,
#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS)
return x;
#elif defined(LIBC_TARGET_CPU_HAS_FMA_DOUBLE)
return fputil::multiply_add(x, 0x1.0p-54, x);
#else
if (xbits.abs().uintval() == 0)
return x;
// Get sign(x) * min_normal.
FPBits eps_bits = FPBits::min_normal();
eps_bits.set_sign(xbits.sign());
double eps = eps_bits.get_val();
double normalize_const = (x_exp == 0) ? eps : 0.0;
double scaled_normal =
fputil::multiply_add(x + normalize_const, 0x1.0p54, eps);
return fputil::multiply_add(scaled_normal, 0x1.0p-54, -normalize_const);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}

#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
return x * asin_eval(x * x);
#else
unsigned idx;
DoubleDouble x_sq = fputil::exact_mult(x, x);
double err = x * 0x1.0p-51;
// Polynomial approximation:
// p ~ asin(x)/x

DoubleDouble p = asin_eval(x_sq, idx, err);
// asin(x) ~ x * (ASIN_COEFFS[idx][0] + p)
DoubleDouble r0 = fputil::exact_mult(x, p.hi);
double r_lo = fputil::multiply_add(x, p.lo, r0.lo);

// Ziv's accuracy test.

double r_upper = r0.hi + (r_lo + err);
double r_lower = r0.hi + (r_lo - err);

if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;

// Ziv's accuracy test failed, perform 128-bit calculation.

// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6));

// Get x^2 - idx/21 exactly. When FMA is available, double-double
// multiplication will be correct for all rounding modes. Otherwise we use
// Float128 directly.
Float128 x_f128(x);

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// u = x^2 - idx/64
Float128 u_hi(
fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi));
Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo));
#else
Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128);
Float128 u = fputil::quick_add(
x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6)));
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

Float128 p_f128 = asin_eval(u, idx);
Float128 r = fputil::quick_mul(x_f128, p_f128);

return static_cast<double>(r);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
// |x| >= 0.5

double x_abs = xbits.abs().get_val();

// Maintaining the sign:
constexpr double SIGN[2] = {1.0, -1.0};
double x_sign = SIGN[xbits.is_neg()];

// |x| >= 1
if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) {
// x = +-1, asin(x) = +- pi/2
if (x_abs == 1.0) {
// return +- pi/2
return fputil::multiply_add(x_sign, PI_OVER_TWO.hi,
x_sign * PI_OVER_TWO.lo);
}
// |x| > 1, return NaN.
if (xbits.is_finite()) {
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
} else if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
}
return FPBits::quiet_nan().get_val();
}

// When |x| >= 0.5, we perform range reduction as follow:
//
// Assume further that 0.5 <= x < 1, and let:
// y = asin(x)
// We will use the double angle formula:
// cos(2y) = 1 - 2 sin^2(y)
// and the complement angle identity:
// x = sin(y) = cos(pi/2 - y)
// = 1 - 2 sin^2 (pi/4 - y/2)
// So:
// sin(pi/4 - y/2) = sqrt( (1 - x)/2 )
// And hence:
// pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) )
// Equivalently:
// asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) )
// Let u = (1 - x)/2, then:
// asin(x) = pi/2 - 2 * asin( sqrt(u) )
// Moreover, since 0.5 < x <= 1:
// 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
// And hence we can reuse the same polynomial approximation of asin(x) when
// |x| <= 0.5:
// asin(x) ~ pi/2 - 2 * sqrt(u) * P(u),

// u = (1 - |x|)/2
double u = fputil::multiply_add(x_abs, -0.5, 0.5);
// v_hi + v_lo ~ sqrt(u).
// Let:
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
// Then:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// ~ v_hi + h / (2 * v_hi)
// So we can use:
// v_lo = h / (2 * v_hi).
// Then,
// asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u)
double v_hi = fputil::sqrt<double>(u);

#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
double p = asin_eval(u);
double r = x_sign * fputil::multiply_add(-2.0 * v_hi, p, PI_OVER_TWO.hi);
return r;
#else

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double h = fputil::multiply_add(v_hi, -v_hi, u);
#else
DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi);
double h = (u - v_hi_sq.hi) - v_hi_sq.lo;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

// Scale v_lo and v_hi by 2 from the formula:
// vh = v_hi * 2
// vl = 2*v_lo = h / v_hi.
double vh = v_hi * 2.0;
double vl = h / v_hi;

// Polynomial approximation:
// p ~ asin(sqrt(u))/sqrt(u)
unsigned idx;
double err = vh * 0x1.0p-51;

DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err);

// Perform computations in double-double arithmetic:
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p);
DoubleDouble r = fputil::exact_add(PI_OVER_TWO.hi, -r0.hi);

double r_lo = PI_OVER_TWO.lo - r0.lo + r.lo;

// Ziv's accuracy test.

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double r_upper = fputil::multiply_add(
r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, err));
double r_lower = fputil::multiply_add(
r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, -err));
#else
r_lo *= x_sign;
r.hi *= x_sign;
double r_upper = r.hi + (r_lo + err);
double r_lower = r.hi + (r_lo - err);
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;

// Ziv's accuracy test failed, we redo the computations in Float128.
// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6));

// After the first step of Newton-Raphson approximating v = sqrt(u), we have
// that:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// v_lo = h / (2 * v_hi)
// With error:
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
// = -h^2 / (2*v * (sqrt(u) + v)^2).
// Since:
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
// we can add another correction term to (v_hi + v_lo) that is:
// v_ll = -h^2 / (2*v_hi * 4u)
// = -v_lo * (h / 4u)
// = -vl * (h / 8u),
// making the errors:
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
// well beyond 128-bit precision needed.

// Get the rounding error of vl = 2 * v_lo ~ h / vh
// Get full product of vh * vl
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi;
#else
DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl);
double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// vll = 2*v_ll = -vl * (h / (4u)).
double t = h * (-0.25) / u;
double vll = fputil::multiply_add(vl, t, vl_lo);
// m_v = -(v_hi + v_lo + v_ll).
Float128 m_v = fputil::quick_add(
Float128(vh), fputil::quick_add(Float128(vl), Float128(vll)));
m_v.sign = Sign::NEG;

// Perform computations in Float128:
// asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u).
Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u));

Float128 p_f128 = asin_eval(y_f128, idx);
Float128 r0_f128 = fputil::quick_mul(m_v, p_f128);
Float128 r_f128 = fputil::quick_add(PI_OVER_TWO_F128, r0_f128);

if (xbits.is_neg())
r_f128.sign = Sign::NEG;

return static_cast<double>(r_f128);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}

} // namespace LIBC_NAMESPACE_DECL
Loading
Loading